Matching Items (2)
153948-Thumbnail Image.png
Description
Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.
ContributorsLee, Soochan (Author) / Phelan, Patrick E (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Taylor, Robert A. (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2015
132451-Thumbnail Image.png
Description
In an hour, the Earth is impacted with enough solar energy to power the world for an entire year. The best way to expend this renewable source of energy is by storing solar power. Many solar energy harvesting methods only produce power when directly exposed to sunlight. This issue can

In an hour, the Earth is impacted with enough solar energy to power the world for an entire year. The best way to expend this renewable source of energy is by storing solar power. Many solar energy harvesting methods only produce power when directly exposed to sunlight. This issue can be resolved by implementing thermal energy storage (TES) systems. This paper presents a novel method for increasing the efficiency of TES systems for building applications. Efficiency is determined by two main factors: heat storage capacity and thermal conductivity. Although latent systems have lower energy storage densities than other types of heat storage technologies, they are an inexpensive and sustainable energy harvesting system. Additionally, the disadvantage associated with lower energy density can be counteracted by improving the charging rate of latent energy storage systems. Therefore, this work focuses on Latent TES systems and how to improve their efficiencies. This paper presents a novel approach for increasing the thermal conductivity of latent heat storage systems using graphene foams. The high thermal conductivity of graphene foam will help counteract the low conductivity of the PCMs with a small sacrifice of the effective latent heat. The expected effect is a doubled charging rate and increased efficiency within the heat storage system.
ContributorsBui, Kimberly (Co-author, Co-author) / Phelan, Patrick E. (Thesis director) / Ruan, Xiulin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05