Matching Items (2)

147875-Thumbnail Image.png

The Evaluation of Algae-Derived Activated Carbon Adsorbents for Direct CO2 Capture from Ambient Air

Description

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.

Contributors

Agent

Created

Date Created
  • 2021-05

132449-Thumbnail Image.png

Can Biochar Be Converted into Activated Carbon?

Description

In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the

In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the biochar is manufactured into charcoal briquettes and sold on the market for energy usage, however this may not provide the best value for community members who make less than a dollar a day and sell the biochar for as little as 16 cents per kilogram. This thesis seeks to improve the price of biochar and help their livelihoods as well as explore innovative solutions. One way to improve biochar while addressing water security problems is to create activated carbon, which uses its heightened porosity to adsorb contaminants from water or air. Activated carbon is also worth 100x the price of biochar. This thesis evaluates the mass content of biochar produced in Nepal, comparing it to literature values, and performed gravimetric and thermogravimetric analysis, comparing it to Activated Charcoal. Analysis of the biochar system used in Nepal reveals that the byproduct of biochar, biofuels, is highly underutilized. The higher heating value of biochar is 17.95 MJ/kg, which is much lower than other charcoals which burn around 30 MJ/kg. Low volatile content, less than 5% in biochar, provides a smokeless briquette, which is favorable on the market, however low heating value and misutilizations of biofuels in the solution indicate that creating a briquette is not the best use for biochar. Ash content is really high in this biochar, averaging around 12% and it may be due to the feedstock, a composite between Mikania and Lantana, which have 5.23% and 10.77% ash content respectively. This does not necessarily indicate a poor quality biochar, since ash values can vary widely between charcoals. Producing activated charcoal from this biochar is a favored solution; it will increase the price of the biochar, provide water security solutions, and be an appropriate process for this biochar, where heating value and underutilization of biofuel byproducts pose a problem.

Contributors

Agent

Created

Date Created
  • 2019-05