Matching Items (9)
Filtering by

Clear all filters

152087-Thumbnail Image.png
Description
Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These designs have the property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are completely confounded. In

Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These designs have the property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are completely confounded. In this dissertation, orthogonal arrays were evaluated with many popular design-ranking criteria in order to identify optimal 20-run and 24-run no-confounding designs. Monte Carlo simulation was used to empirically assess the model fitting effectiveness of the recommended no-confounding designs. The results of the simulation demonstrated that these new designs, particularly the 24-run designs, are successful at detecting active effects over 95% of the time given sufficient model effect sparsity. The final chapter presents a screening design selection methodology, based on decision trees, to aid in the selection of a screening design from a list of published options. The methodology determines which of a candidate set of screening designs has the lowest expected experimental cost.
ContributorsStone, Brian (Author) / Montgomery, Douglas C. (Thesis advisor) / Silvestrini, Rachel T. (Committee member) / Fowler, John W (Committee member) / Borror, Connie M. (Committee member) / Arizona State University (Publisher)
Created2013
152015-Thumbnail Image.png
Description
This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result in good properties when it comes to model fitting. Optimal

This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result in good properties when it comes to model fitting. Optimal designs traditionally perform very well in terms of model fitting, particularly when a polynomial is intended, but can result in problematic replication in the case of insignificant factors. By bringing these two design types together, positive properties of each can be retained while mitigating potential weaknesses. Hybrid space-filling designs, generated as Latin hypercubes augmented with I-optimal points, are compared to designs of each contributing component. A second design type called a bridge design is also evaluated, which further integrates the disparate design types. Bridge designs are the result of a Latin hypercube undergoing coordinate exchange to reach constrained D-optimality, ensuring that there is zero replication of factors in any one-dimensional projection. Lastly, bridge designs were augmented with I-optimal points with two goals in mind. Augmentation with candidate points generated assuming the same underlying analysis model serves to reduce the prediction variance without greatly compromising the space-filling property of the design, while augmentation with candidate points generated assuming a different underlying analysis model can greatly reduce the impact of model misspecification during the design phase. Each of these composite designs are compared to pure space-filling and optimal designs. They typically out-perform pure space-filling designs in terms of prediction variance and alphabetic efficiency, while maintaining comparability with pure optimal designs at small sample size. This justifies them as excellent candidates for initial experimentation.
ContributorsKennedy, Kathryn (Author) / Montgomery, Douglas C. (Thesis advisor) / Johnson, Rachel T. (Thesis advisor) / Fowler, John W (Committee member) / Borror, Connie M. (Committee member) / Arizona State University (Publisher)
Created2013
153053-Thumbnail Image.png
Description
No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor interactions with each other. These designs allow for potential estimation

No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor interactions with each other. These designs allow for potential estimation of main effects and a few two-factor interactions without the need for follow-up experimentation. Analysis methods for non-regular designs is an area of ongoing research, because standard variable selection techniques such as stepwise regression may not always be the best approach. The current work investigates the use of the Dantzig selector for analyzing no-confounding designs. Through a series of examples it shows that this technique is very effective for identifying the set of active factors in no-confounding designs when there are three of four active main effects and up to two active two-factor interactions.

To evaluate the performance of Dantzig selector, a simulation study was conducted and the results based on the percentage of type II errors are analyzed. Also, another alternative for 6 factor NC design, called the Alternate No-confounding design in six factors is introduced in this study. The performance of this Alternate NC design in 6 factors is then evaluated by using Dantzig selector as an analysis method. Lastly, a section is dedicated to comparing the performance of NC-6 and Alternate NC-6 designs.
ContributorsKrishnamoorthy, Archana (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Thesis advisor) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2014
150555-Thumbnail Image.png
Description
Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction,

Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction, etc.) can drastically change demand structures within a short period of time. Furthermore, product obsolescence and cannibalization are real concerns due to short product life cycles. Analytical tools that can handle this complexity are important to quantify the impact of business scenarios/decisions on supply chain performance. Traditional analysis methods struggle in this environment of large, complex datasets with hundreds of features becoming the norm in supply chains. We present an empirical analysis framework termed Scenario Trees that provides a novel representation for impulse and delayed scenario events and a direction for modeling multivariate constrained responses. Amongst potential learners, supervised learners and feature extraction strategies based on tree-based ensembles are employed to extract the most impactful scenarios and predict their outcome on metrics at different product hierarchies. These models are able to provide accurate predictions in modeling environments characterized by incomplete datasets due to product substitution, missing values, outliers, redundant features, mixed variables and nonlinear interaction effects. Graphical model summaries are generated to aid model understanding. Models in complex environments benefit from feature selection methods that extract non-redundant feature subsets from the data. Additional model simplification can be achieved by extracting specific levels/values that contribute to variable importance. We propose and evaluate new analytical methods to address this problem of feature value selection and study their comparative performance using simulated datasets. We show that supply chain surveillance can be structured as a feature value selection problem. For situations such as new product introduction, a bottom-up approach to scenario analysis is designed using an agent-based simulation and data mining framework. This simulation engine envelopes utility theory, discrete choice models and diffusion theory and acts as a test bed for enacting different business scenarios. We demonstrate the use of machine learning algorithms to analyze scenarios and generate graphical summaries to aid decision making.
ContributorsShinde, Amit (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Villalobos, Rene (Committee member) / Janakiram, Mani (Committee member) / Arizona State University (Publisher)
Created2012
154115-Thumbnail Image.png
Description
Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs.



First, we demonstrated how the traditional exchange methods could be improved to generate a computationally efficient algorithm for finding G-optimal designs. The proposed two-stage algorithm, which is called the cCEA, uses a clustering-based approach to restrict the set of possible candidates for PEA, and then improves the G-efficiency using CEA.



The second major contribution of this dissertation is the development of fast algorithms for constructing D-optimal designs that determine the optimal sequence of stimuli in fMRI studies. The update formula for the determinant of the information matrix was improved by exploiting the sparseness of the information matrix, leading to faster computation times. The proposed algorithm outperforms genetic algorithm with respect to computational efficiency and D-efficiency.



The third contribution is a study of optimal experimental designs for more general functional response models. First, the B-spline system is proposed to be used as the non-parametric smoother of response function and an algorithm is developed to determine D-optimal sampling points of a spectrum variable. Second, we proposed a two-step algorithm for finding the optimal design for both sampling points and experimental settings. In the first step, the matrix of experimental settings is held fixed while the algorithm optimizes the determinant of the information matrix for a mixed effects model to find the optimal sampling times. In the second step, the optimal sampling times obtained from the first step is held fixed while the algorithm iterates on the information matrix to find the optimal experimental settings. The designs constructed by this approach yield superior performance over other designs found in literature.
ContributorsSaleh, Moein (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Runger, George C. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2015
135328-Thumbnail Image.png
Description
Millennials are the group of people that make up the newer generation of the world's population and they are constantly surrounded by technology, as well as known for having different values than the previous generations. Marketers have to adapt to newer ways to appeal to millennials and secure their loyalty

Millennials are the group of people that make up the newer generation of the world's population and they are constantly surrounded by technology, as well as known for having different values than the previous generations. Marketers have to adapt to newer ways to appeal to millennials and secure their loyalty since millennials are always on the lookout for the next best thing and will "trade up for brands that matter, but trade down when brand value is weak", it poses a challenge for the marketing departments of companies (Fromm, J. & Parks, J.). The airline industry is one of the fastest growing sectors as "the total number of people flying on U.S. airlines will increase from 745.5 million in 2014 and grow to 1.15 billion in 2034," which shows that airlines have a wider population to market to, and will need to improve their marketing strategies to differentiate from competitors (Power). The financial sector also has a difficult time reaching out to millennials because "millennials are hesitant to take financial risks," as well as downing in college debt, while not making as much money as previous generations (Fromm, J. & Parks, J.). By looking into the marketing strategies, specifically using social media platforms, of the two industries, an understanding can be gathered of what millennials are attracted to. Along with looking at the marketing strategies of financial and airline industries, I looked at the perspectives of these industries in different countries, which is important to look at because then we can see if the values of millennials vary across different cultures. Countries chosen for research to further examine their cultural differences in terms of marketing practices are the United States and England. The main form of marketing that was used for this research were social media accounts of the companies, and seeing how they used the social networking platforms to reach and engage with their consumers, especially with those of the millennial generation. The companies chosen for further research for the airline industry from England were British Airways, EasyJet, and Virgin Atlantic, while for the U.S. Delta Airlines, Inc., Southwest Airlines, and United were chosen. The companies chosen to further examine within the finance industry from England include Barclay's, HSBC, and Lloyd's Bank, while for the U.S. the banks selected were Bank of America, JPMorgan Chase, and Wells Fargo. The companies for this study were chosen because they are among the top five in their industry, as well as all companies that I have had previous interactions with. It was meant to see what the companies at the top of the industry were doing that set them apart from their competitors in terms of social media marketing content and see if there were features they lacked that could be changed or improvements they could make. A survey was also conducted to get a better idea of the attitudes and behaviors of millennials when it comes to the airline and finance industries, as well as towards social media marketing practices.
ContributorsPathak, Krisha Hemanshu (Author) / Kumar, Ajith (Thesis director) / Arora, Hina (Committee member) / W. P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134871-Thumbnail Image.png
Description
This thesis, through a thorough literature and content review, discusses the various ways that data analytics and supply chain management intersect. Both fields have been around for a while, but are incredibly aided by the information age we live in today. Today's ERP systems and supply chain software packages use

This thesis, through a thorough literature and content review, discusses the various ways that data analytics and supply chain management intersect. Both fields have been around for a while, but are incredibly aided by the information age we live in today. Today's ERP systems and supply chain software packages use advanced analytic techniques and algorithms to optimize every aspect of supply chain management. This includes aspects like inventory optimization, portfolio management, network design, production scheduling, fleet planning, supplier evaluation, and others. The benefit of these analytic techniques is a reduction in costs as well as an improvement in overall supply chain performance and efficiencies. The paper begins with a short historical context on business analytics and optimization then moves on to the impact and application of analytics in the supply chain today. Following that the implications of big data are explored, along with how a company might begin to take advantage of big data and what challenges a firm may face along the way. The current tools used by supply chain professionals are then discussed. There is then a section on the most up and coming technologies; the internet of things, blockchain technology, additive manufacturing (3D printing), and machine learning; and how those technologies may further enable the successful use of analytics to improve supply chain management. Companies that do take advantage of analytics in their supply chains are sure to maintain a competitive advantage over those firms that fail to do so.
ContributorsCotton, Ryan Aaron (Author) / Taylor, Todd (Thesis director) / Arora, Hina (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
157561-Thumbnail Image.png
Description
Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive

Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive (or negative) outcome. This research investigates and proposes alternative designs to alleviate the problem of separation in small-sample D-optimal designs for the logistic regression model. Separation causes the non-existence of maximum likelihood parameter estimates and presents a serious problem for model fitting purposes.

First, it is shown that exact, multi-factor D-optimal designs for the logistic regression model can be susceptible to separation. Several logistic regression models are specified, and exact D-optimal designs of fixed sizes are constructed for each model. Sets of simulated response data are generated to estimate the probability of separation in each design. This study proves through simulation that small-sample D-optimal designs are prone to separation and that separation risk is dependent on the specified model. Additionally, it is demonstrated that exact designs of equal size constructed for the same models may have significantly different chances of encountering separation.

The second portion of this research establishes an effective strategy for augmentation, where additional design runs are judiciously added to eliminate separation that has occurred in an initial design. A simulation study is used to demonstrate that augmenting runs in regions of maximum prediction variance (MPV), where the predicted probability of either response category is 50%, most reliably eliminates separation. However, it is also shown that MPV augmentation tends to yield augmented designs with lower D-efficiencies.

The final portion of this research proposes a novel compound optimality criterion, DMP, that is used to construct locally optimal and robust compromise designs. A two-phase coordinate exchange algorithm is implemented to construct exact locally DMP-optimal designs. To address design dependence issues, a maximin strategy is proposed for designating a robust DMP-optimal design. A case study demonstrates that the maximin DMP-optimal design maintains comparable D-efficiencies to a corresponding Bayesian D-optimal design while offering significantly improved separation performance.
ContributorsPark, Anson Robert (Author) / Montgomery, Douglas C. (Thesis advisor) / Mancenido, Michelle V (Thesis advisor) / Escobedo, Adolfo R. (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2019
158883-Thumbnail Image.png
Description
Nonregular designs are a preferable alternative to regular resolution four designs because they avoid confounding two-factor interactions. As a result nonregular designs can estimate and identify a few active two-factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard screening strategies can fail to identify all

Nonregular designs are a preferable alternative to regular resolution four designs because they avoid confounding two-factor interactions. As a result nonregular designs can estimate and identify a few active two-factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard screening strategies can fail to identify all active effects. In this research, two-level nonregular screening designs with orthogonal main effects will be discussed. By utilizing knowledge of the alias structure, a design based model selection process for analyzing nonregular designs is proposed.

The Aliased Informed Model Selection (AIMS) strategy is a design specific approach that is compared to three generic model selection methods; stepwise regression, least absolute shrinkage and selection operator (LASSO), and the Dantzig selector. The AIMS approach substantially increases the power to detect active main effects and two-factor interactions versus the aforementioned generic methodologies. This research identifies design specific model spaces; sets of models with strong heredity, all estimable, and exhibit no model confounding. These spaces are then used in the AIMS method along with design specific aliasing rules for model selection decisions. Model spaces and alias rules are identified for three designs; 16-run no-confounding 6, 7, and 8-factor designs. The designs are demonstrated with several examples as well as simulations to show the AIMS superiority in model selection.

A final piece of the research provides a method for augmenting no-confounding designs based on a model spaces and maximum average D-efficiency. Several augmented designs are provided for different situations. A final simulation with the augmented designs shows strong results for augmenting four additional runs if time and resources permit.
ContributorsMetcalfe, Carly E (Author) / Montgomery, Douglas C. (Thesis advisor) / Jones, Bradley (Committee member) / Pan, Rong (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2020