Matching Items (3)
Filtering by

Clear all filters

135817-Thumbnail Image.png
Description
In 2010, two gamma-ray /x-ray bubbles were detected in the center of the Milky Way Galaxy. These bubbles extend symmetrically ≈ 30, 000 light years above and below the Galactic Center, with a width of ≈ 27, 000 light years. These bubbles emit gamma-rays at energies between 1 and 100

In 2010, two gamma-ray /x-ray bubbles were detected in the center of the Milky Way Galaxy. These bubbles extend symmetrically ≈ 30, 000 light years above and below the Galactic Center, with a width of ≈ 27, 000 light years. These bubbles emit gamma-rays at energies between 1 and 100 giga-electronvolts, have approximately uniform surface brightness, and are expanding at ≈ 30, 000 km/s. We believe that these Fermi Bubbles are the result of an astrophysical jet pulse that occurred millions of years ago. Utilizing high-performance computing and Euler’s Gas Dynamics Equations, we hope to find a realistic simulation that will tell us more about the age of these Fermi Bubbles and better understand the mechanism that powers the bubbles.
ContributorsWagner, Benjamin Leng (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computing and Informatics Program (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132392-Thumbnail Image.png
Description
This project attempts to create an accurate numerical simulation of the eastern limb of the HH 901 jet in the Mystic Mountain formation located in the Carina Nebula. Using a 3rd order accurate WENO numerical scheme in space, and a 3rd order accurate RK method in time, the temperature, density,

This project attempts to create an accurate numerical simulation of the eastern limb of the HH 901 jet in the Mystic Mountain formation located in the Carina Nebula. Using a 3rd order accurate WENO numerical scheme in space, and a 3rd order accurate RK method in time, the temperature, density, radiative cooling, length, and average jet velocity of this astrophysical phenomenon were simulated based on observations made by Hubble Space Telescope and the work of Reiter and Smith (2013) and (2014). The results of this simulation are displayed in three figures, one each for temperature, radiative cooling, and density, which show a jet displaying morphology consistent with that of the HH 901 eastern limb without adjustment for stellar wind. Also discussed are the effects of different jet speeds, initial conditions, and pulse parameters on the shape and behavior of the simulated jets, as well as continuing work to be done on the simulation to enhance its accuracy and usefulness.
ContributorsKreitzer, Kyle (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165114-Thumbnail Image.png
Description

The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the

The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the jet, among which are pulses, bow shock, terminal Mach disk, and Kelvin-Helmholtz rollup. We use the gas dynamical equations to solve for density, velocity, and temperature. The numerical methods used to solve the equations are third-order WENO (weighted essentially non-oscillatory) and third-order Runge-Kutta. Graphs of density and radiative cooling demonstrate the effect of adding wind (nonzero ambient velocity). The paper discusses the altering of the ambient velocity and final time to fit the shape of the jet in the Hubble image. The suggested next steps are simulating the other HH901 jet and comparing the jets’ atomic makeups to advance understanding of astrophysical jets.

ContributorsBuyer, Michael (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05