Matching Items (3)
Filtering by

Clear all filters

135012-Thumbnail Image.png
Description
With social technology on the rise, it is no surprise that young students are at the forefront of its use and impact, particularly in the realm of education. Due to greater accessibility to technology, media multitasking and task-switching are becoming increasingly prominent in learning environments. While technology can have numerous

With social technology on the rise, it is no surprise that young students are at the forefront of its use and impact, particularly in the realm of education. Due to greater accessibility to technology, media multitasking and task-switching are becoming increasingly prominent in learning environments. While technology can have numerous benefits, current literature, though somewhat limited in this scope, overwhelmingly shows it can also be detrimental for academic performance and learning when used improperly. While much of the existing literature regarding the impact of technology on multitasking and task-switching in learning environments is limited to self-report data, it presents important findings and potential applications for modernizing educational institutions in the wake of technological dependence. This literature review summarizes and analyzes the studies in this area to date in an effort to provide a better understanding of the impact of social technology on student learning. Future areas of research and potential strategies to adapt to rising technological dependency are also discussed, such as using a brief "technology break" between periods of study. As of yet, the majority of findings in this research area suggest the following: multitasking while studying lengthens the time required for completion; multitasking during lectures can affect memory encoding and comprehension; excessive multitasking and academic performance are negatively correlated; metacognitive strategies for studying have potential for reducing the harmful effects of multitasking; and the most likely reason students engage in media-multitasking at the cost of learning is the immediate emotional gratification. Further research is still needed to fill in gaps in literature, as well as develop other potential perspectives relevant to multitasking in academic environments.
ContributorsKhanna, Sanjana (Author) / Roberts, Nicole (Thesis director) / Burleson, Mary (Committee member) / Barrett, The Honors College (Contributor)
Created2016-12
168319-Thumbnail Image.png
Description
Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism

Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism was applied toward predictions for how humans would react after making errors in a more ecologically valid multitasking paradigm. Previous work on neural and behavioral indices of error-monitoring strongly supports the idea that errors are distracting and can deplete attentional resources. Therefore, it was predicted that after committing an error, if a subject is subsequently presented with two simultaneously initiated task alerts (a conflict trial), they would be more likely to miss their response opportunity for one task and stay tunneled on the other task that originally caused the error. Additionally, it was predicted that this effect would dissipate after several seconds (under different lag conditions), making the error cascade less likely when subsequent tasks are delayed before presentation. A Multi-Attribute Task Battery was used to present the paradigm and collect post-error and post-correct performance measures. The results supported both predictions: Post-error accuracy was significantly lower as compared to post-correct accuracy (as measured through post-trial error rates). Post-trial error rates were also higher at shorter lags and dissipated over time, and the effects of pre-conflict performance on post-trial error rates was especially noticeable at shorter lags (although the interaction was not statistically significant). A follow-up analysis also demonstrated that following errors (as opposed to following correct trials), participants clicked significantly more on the task that originally caused the error (regardless of lag). This continued task-engagement further supports the idea that errors lead to a cognitive tunneling effect. The study provides evidence that in a multitasking scenario, the human cognitive error-monitoring mechanism can be maladaptive, where errors beget more errors. Additionally, the experimental paradigm provides a bridge between concepts originating in highly controlled methods of cognitive science research and more applied scenarios in the field of human factors.
ContributorsLewis, Christina Mary (Author) / Gutzwiller, Robert S (Thesis advisor) / Becker, David V (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2021
158593-Thumbnail Image.png
Description
The choices of an operator under heavy cognitive load are potentially critical to overall safety and performance. Such conditions are common when technological failures arise, and the operator is forced into multi-task situations. Task switching choice was examined in an effort to both validate previous work concerning a model of

The choices of an operator under heavy cognitive load are potentially critical to overall safety and performance. Such conditions are common when technological failures arise, and the operator is forced into multi-task situations. Task switching choice was examined in an effort to both validate previous work concerning a model of task overload management and address unresolved matters related to visual sampling. Using the Multi-Attribute Task Battery and eye tracking, the experiment studied any influence of task priority and difficulty. Continuous visual attention measurements captured attentional switches that do not manifest into behaviors but may provide insight into task switching choice. Difficulty was found to have an influence on task switching behavior; however, priority was not. Instead, priority may affect time spent on a task rather than strictly choice. Eye measures revealed some moderate connections between time spent dwelling on a task and subjective interest. The implication of this, as well as eye tracking used to validate a model of task overload management as a whole, is discussed.
ContributorsZabala, Garrett (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2020