Matching Items (14)
171908-Thumbnail Image.png
Description
This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for

This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for modeling nonlinear systems with noise on a simulated continuously stirred tank reactor (CSTR). Comparing MoD to AutoRegressive with eXogenous input (ARX) estimation, MoD outperforms ARX in terms of addressing both nonlinearity and noise in the CSTR system. With the CSTR system as an initial proof of concept, MoD is then used to model individual walking behavior using intervention data from participants of HeartSteps, a walking intervention that studies the effect of within-day suggestions. Given the number of possible measured features from which to design the MoD models, as well as the number of model parameters that influence the model’s performance, optimizing MoD models through exhaustive search is infeasible. Consequently, a discrete implementation of simultaneous perturbation stochastic approximation (DSPSA) is shown to be an efficient algorithm to find optimal models of walking behavior. Combining MoD with DSPSA, models of walking behavior were developed using participant data from Just Walk, a day-to-day walking intervention; MoD outperformed ARX models on both estimation and validation data. DSPSA was also applied to ARX modeling, highlighting the use of DSPSA to not only search over model parameters and features but also data partitioning, as DSPSA was used to evaluate models under various combinations of estimation and validation data from a single participant’s walking data. Results of this thesis point to ARX with DSPSA as a routine means for dynamic model estimation in large-scale behavioral intervention settings.
ContributorsKha, Rachael T (Author) / Rivera, Daniel E (Thesis advisor) / Deng, Shuguang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
Description
The dynamics of a stably and thermally stratified, two dimensional fluid-filled cavity are the subject of numerical study. When gravity is orthogonal to the endwalls, a closed form for a steady state solution with trivial flow may be obtained. However, as soon as the cavity is tilted the flow becomes

The dynamics of a stably and thermally stratified, two dimensional fluid-filled cavity are the subject of numerical study. When gravity is orthogonal to the endwalls, a closed form for a steady state solution with trivial flow may be obtained. However, as soon as the cavity is tilted the flow becomes nontrivial. Previous studies have investigated when this tilt angle is 180 degrees (Rayleigh-Bénard convection), 90 degrees, and 0 degrees, or have done a sweep while solving the steady-state equations. When buoyancy is sufficiently weak the flow is stable and steady up to 90 degrees of tilt. Above a certain level of buoyancy, as measured by the temperature difference between the top and bottom walls, the flow becomes unsteady above a tilt angle less than 90 degrees. Specifically, In this study we examine the relationship between the critical tilt angle and the buoyancy level at the onset of unsteadiness, as well as the dynamical mechanisms by which it occurs.
ContributorsGrayer, Hezekiah Villarin (Author) / Lopez, Juan M. (Thesis director) / Welfert, Bruno D. (Committee member) / Shen, Jie (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Laminate devices have the potential to lower the cost and complexity of robots. Taking advantage of laminate materials' flexibility, a high-performance jumping platform has been developed with the goal of optimizing jump ground clearance. Four simulations are compared in order to understand which dynamic model elements (leg flexibility, motor dynamics,

Laminate devices have the potential to lower the cost and complexity of robots. Taking advantage of laminate materials' flexibility, a high-performance jumping platform has been developed with the goal of optimizing jump ground clearance. Four simulations are compared in order to understand which dynamic model elements (leg flexibility, motor dynamics, contact, joint damping, etc.) must be included to accurately model jumping performance. The resulting simulations have been validated with experimental data gathered from a small set of physical leg prototypes spanning design considerations such as gear ratio and leg length, and one in particular was selected for the fidelity of performance trends against experimental results. This simulation has subsequently been used to predict the performance of new leg designs outside the initial design set. The design predicted to achieve the highest jump ground clearance was then built and tested as a demonstration of the usefulness of this simulation.
ContributorsKnaup, Jacob W (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
158466-Thumbnail Image.png
Description
Neglected tropical diseases (NTDs) comprise of diverse communicable diseases that affect mostly the developing economies of the world, the “neglected” populations. The NTDs Visceral Leishmaniasis (VL) and Soil-transmitted Helminthiasis (STH) are among the top contributors of global mortality and/or morbidity. They affect resource-limited regions (poor health-care literacy, infrastructure, etc.) and

Neglected tropical diseases (NTDs) comprise of diverse communicable diseases that affect mostly the developing economies of the world, the “neglected” populations. The NTDs Visceral Leishmaniasis (VL) and Soil-transmitted Helminthiasis (STH) are among the top contributors of global mortality and/or morbidity. They affect resource-limited regions (poor health-care literacy, infrastructure, etc.) and patients’ treatment behavior is irregular due to the social constraints. Through two case studies, VL in India and STH in Ghana, this work aims to: (i) identify the additional and potential hidden high-risk population and its behaviors critical for improving interventions and surveillance; (ii) develop models with those behaviors to study the role of improved control programs on diseases’ dynamics; (iii) optimize resources for treatment-related interventions.

Treatment non-adherence is a less focused (so far) but crucial factor for the hindrance in WHO’s past VL elimination goals. Moreover, treatment non-adherers, hidden from surveillance, lead to high case-underreporting. Dynamical models are developed capturing the role of treatment-related human behaviors (patients’ infectivity, treatment access and non-adherence) on VL dynamics. The results suggest that the average duration of treatment adherence must be increased from currently 10 days to 17 days for a 28-day Miltefosine treatment to eliminate VL.

For STH, children are considered as a high-risk group due to their hygiene behaviors leading to higher exposure to contamination. Hence, Ghana, a resource-limited country, currently implements a school-based Mass Drug Administration (sMDA) program only among children. School staff (adults), equally exposed to this high environmental contamination of STH, are largely ignored under the current MDA program. Cost-effective MDA policies were modeled and compared using alternative definitions of “high-risk population”. This work optimized and evaluated how MDA along with the treatment for high-risk adults makes a significant improvement in STH control under the same budget. The criticality of risk-structured modeling depends on the infectivity coefficient being substantially different for the two adult risk groups.

This dissertation pioneers in highlighting the cruciality of treatment-related risk groups for NTD-control. It provides novel approaches to quantify relevant metrics and impact of population factors. Compliance with the principles and strategies from this study would require a change in political thinking in the neglected regions in order to achieve persistent NTD-control.
ContributorsThakur, Mugdha (Author) / Mubayi, Anuj (Thesis advisor) / Hurtado, Ana M (Committee member) / Paaijmans, Krijn (Committee member) / Michael, Edwin (Committee member) / Arizona State University (Publisher)
Created2020