Matching Items (3)

Filtering by

Clear all filters

133858-Thumbnail Image.png

Cognitive and Auditory Factors for Speech and Music Perception in Elderly Adult Cochlear Implant Users

Description

Working memory and cognitive functions contribute to speech recognition in normal hearing and hearing impaired listeners. In this study, auditory and cognitive functions are measured in young adult normal hearing, elderly normal hearing, and elderly cochlear implant subjects. The effects

Working memory and cognitive functions contribute to speech recognition in normal hearing and hearing impaired listeners. In this study, auditory and cognitive functions are measured in young adult normal hearing, elderly normal hearing, and elderly cochlear implant subjects. The effects of age and hearing on the different measures are investigated. The correlations between auditory/cognitive functions and speech/music recognition are examined. The results may demonstrate which factors can better explain the variable performance across elderly cochlear implant users.

Contributors

Agent

Created

Date Created
2018-05

136164-Thumbnail Image.png

A Case Study: Speech recognition ability in noise for a U.S. military veteran with traumatic brain injury (TBI)

Description

The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition

The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise ratios (S/N) from -10 dB to +15 dB for a control group of ten participants and one US military veteran with history of service-connected TBI. All participants had normal hearing sensitivity defined as thresholds of 20 dB or better at frequencies from 250-8000 Hz in addition to having tympanograms within normal limits. Comparison of the data collected on the control group versus the veteran suggested that the veteran performed worse than the majority of the control group on the AzBio Sentence Test. Further research with more participants would be beneficial to our understanding of how veterans with TBI perform on speech recognition tests in the presence of background noise.

Contributors

Agent

Created

Date Created
2015-05

137669-Thumbnail Image.png

Two-Sentence Recognition with a Pulse Train Vocoder

Description

When listeners hear sentences presented simultaneously, the listeners are better able to discriminate between speakers when there is a difference in fundamental frequency (F0). This paper explores the use of a pulse train vocoder to simulate cochlear implant listening. A

When listeners hear sentences presented simultaneously, the listeners are better able to discriminate between speakers when there is a difference in fundamental frequency (F0). This paper explores the use of a pulse train vocoder to simulate cochlear implant listening. A pulse train vocoder, rather than a noise or tonal vocoder, was used so the fundamental frequency (F0) of speech would be well represented. The results of this experiment showed that listeners are able to use the F0 information to aid in speaker segregation. As expected, recognition performance is the poorest when there was no difference in F0 between speakers, and listeners performed better as the difference in F0 increased. The type of errors that the listeners made was also analyzed. The results show that when an error was made in identifying the correct word from the target sentence, the response was usually (~60%) a word that was uttered in the competing sentence.

Contributors

Agent

Created

Date Created
2013-05