Matching Items (3)
Filtering by

Clear all filters

151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
154148-Thumbnail Image.png
Description
Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this

Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this control. In short, learning became a key component in controlling these systems. As a result, BMIs have become ideal tools to probe and explore brain activity, since they allow the isolation of neural inputs and systematic altering of the relationships between the neural signals and output. I have used BMIs to explore the process of brain adaptability in a motor-like task. To this end, I trained non-human primates to control a 3D cursor and adapt to two different perturbations: a visuomotor rotation, uniform across the neural ensemble, and a decorrelation task, which non-uniformly altered the relationship between the activity of particular neurons in an ensemble and movement output. I measured individual and population level changes in the neural ensemble as subjects honed their skills over the span of several days. I found some similarities in the adaptation process elicited by these two tasks. On one hand, individual neurons displayed tuning changes across the entire ensemble after task adaptation: most neurons displayed transient changes in their preferred directions, and most neuron pairs showed changes in their cross-correlations during the learning process. On the other hand, I also measured population level adaptation in the neural ensemble: the underlying neural manifolds that control these neural signals also had dynamic changes during adaptation. I have found that the neural circuits seem to apply an exploratory strategy when adapting to new tasks. Our results suggest that information and trajectories in the neural space increase after initially introducing the perturbations, and before the subject settles into workable solutions. These results provide new insights into both the underlying population level processes in motor learning, and the changes in neural coding which are necessary for subjects to learn to control neuroprosthetics. Understanding of these mechanisms can help us create better control algorithms, and design training paradigms that will take advantage of these processes.
ContributorsArmenta Salas, Michelle (Author) / Helms Tillery, Stephen I (Thesis advisor) / Si, Jennie (Committee member) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2015
154967-Thumbnail Image.png
Description
Biological and biomedical measurements, when adequately analyzed and processed, can be used to impart quantitative diagnosis during primary health care consultation to improve patient adherence to recommended treatments. For example, analyzing neural recordings from neurostimulators implanted in patients with neurological disorders can be used by a physician to adjust detrimental

Biological and biomedical measurements, when adequately analyzed and processed, can be used to impart quantitative diagnosis during primary health care consultation to improve patient adherence to recommended treatments. For example, analyzing neural recordings from neurostimulators implanted in patients with neurological disorders can be used by a physician to adjust detrimental stimulation parameters to improve treatment. As another example, biosequences, such as sequences from peptide microarrays obtained from a biological sample, can potentially provide pre-symptomatic diagnosis for infectious diseases when processed to associate antibodies to specific pathogens or infectious agents. This work proposes advanced statistical signal processing and machine learning methodologies to assess neurostimulation from neural recordings and to extract diagnostic information from biosequences.

For locating specific cognitive and behavioral information in different regions of the brain, neural recordings are processed using sequential Bayesian filtering methods to detect and estimate both the number of neural sources and their corresponding parameters. Time-frequency based feature selection algorithms are combined with adaptive machine learning approaches to suppress physiological and non-physiological artifacts present in neural recordings. Adaptive processing and unsupervised clustering methods applied to neural recordings are also used to suppress neurostimulation artifacts and classify between various behavior tasks to assess the level of neurostimulation in patients.

For pathogen detection and identification, random peptide sequences and their properties are first uniquely mapped to highly-localized signals and their corresponding parameters in the time-frequency plane. Time-frequency signal processing methods are then applied to estimate antigenic determinants or epitope candidates for detecting and identifying potential pathogens.
ContributorsMaurer, Alexander Joseph (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel (Committee member) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016