Matching Items (3)
Filtering by

Clear all filters

134761-Thumbnail Image.png
Description
The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and

The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and Europe which allows it to achieve superb angular resolution. I investigate a part of the northern sky to search for rare radio objects such as radio haloes and radio relics that may have not been able to have been resolved by other radio telescopes.
ContributorsNguyen, Dustin Dinh (Author) / Scannapieco, Evan (Thesis director) / Butler, Nathaniel (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132911-Thumbnail Image.png
Description
I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first

I test the hypothesis that galactic magnetic fields originate from regions of dense
star formation (Dahlem et al. 2006) by comparing maps of 120-240 MHz synchrotron emission and hydrogen alpha (Hα) emission of the tidally-interacting, edge-on, barred spiral galaxy UGC 9665. Synchrotron emission traces magnetic field strength to a rough first order, while Hα emission traces recent massive star formation. UGC 9665 was selected because it was included in the LOw Frequency ARray (LOFAR) TwoMetre Sky Survey (LoTSS; Shimwell et al. (2017)) as well as the Calar Alto Legacy Integral Field Area Survey (CALIFA; Sanchez et al. (2012)). I generated vertical intensity profiles at several distances along the disk from the galactic center for synchrotron emission and Hα in order to measure how the intensity of each falls off with distance from the midplane. In addition to correlating the vertical profiles to see if there is a relationship between star formation and magnetic field strength, I fit the LOFAR vertical profiles to characteristic Gaussian and exponential functions given by Dumke et al. (1995). Fitting these equations have been shown to be good indicators of the main mode of cosmic ray transport, whether it is advection (exponential fit) or diffusion (Gaussian fit) (Heesen et al. 2016). Cosmic rays originate from supernova,
and core collapse supernovae occur in star forming regions, which also produce
advective winds, so I test the correlation between star-forming regions and advective regions as predicted by the Heesen et al. (2016) method. Similar studies should be conducted on different galaxies in the future in order to further test these hypotheses and how well LOFAR and CALIFA complement each other, which will be made possible by the full release of the LOFAR Two-Metre Sky Survey (LoTSS) (Shimwell et al. 2017).
ContributorsHuckabee, Gabriela R (Author) / Jansen, Rolf (Thesis director) / Windhorst, Rogier (Committee member) / Bowman, Judd (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05