Matching Items (3)
Filtering by

Clear all filters

133789-Thumbnail Image.png
Description
This report investigates the mass-transfer kinetics of gas diffusion through an asymmetrical hollow-fiber membrane developed for the membrane biofilm reactor (MBfR) when it is used to microbiologically convert syngas (a mixture of H2, CO2, and CO) to organic products. The asymmetric Matrimid® membrane had superior diffusion fluxes compared

This report investigates the mass-transfer kinetics of gas diffusion through an asymmetrical hollow-fiber membrane developed for the membrane biofilm reactor (MBfR) when it is used to microbiologically convert syngas (a mixture of H2, CO2, and CO) to organic products. The asymmetric Matrimid® membrane had superior diffusion fluxes compared to commercially available symmetric, three-layer composite and polypropylene single-layer membranes. The Matrimid® asymmetric membrane had a H2 gas-gas diffusion flux between 960- and 1600-fold greater than that of the composite membrane and between 32,000- and 46,800-fold greater than that of the single-layer membrane. Gas-gas diffusion experiments across the Matrimid® membrane also demonstrated plasticization behavior for pure CO2 and H2 gas feeds. In particular, a 10 psia increase in inlet pressure resulted in a 12-fold increase in permeance for H2 and a 16-fold increase for CO2. Plasticization was minimal for symmetric composite and single-layer membranes. Thus, diffusion fluxes were much higher for the asymmetric membrane than for the symmetric composite and single-layer membranes, and this supports the promise of the asymmetric membrane as a high-efficiency means to deliver syngas to biofilms able to convert the syngas to organic products. Gas-liquid diffusion was much slower than gas-gas diffusion, and this supports the benefit of using the MBfR approach over fermentation reactors that rely on sparging syngas.
ContributorsArafa, Omar M. (Author) / Rittmann, Bruce (Thesis director) / Torres, Cesar (Committee member) / Chemical Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154238-Thumbnail Image.png
Description
ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2.

ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2. These membranes offer very tangible potential to separate CO2 in a wide array of industrially relevant separation processes, such as the separation from CO2 in flue gas emissions, as well as the sweetening of methane.

By virtue of this, the purpose of this dissertation is to synthesize and characterize two linear large-pore MOF membranes, MOF-5 and ZIF-68, and to study their gas separation properties in binary mixtures of CO¬2/N2 and CO2/CH4. The three main objectives researched are as follows. The first is to study the pervaporation behavior and stability of MOF-5; this is imperative because although MOF-5 exhibits desirable adsorption and separation characteristics, it is very unstable in atmospheric conditions. In determining its stability and behavior in pervaporation, this material can be utilized in conditions wherein atmospheric levels of moisture can be avoided. The second objective is to synthesize, optimize and characterize a linear, more stable MOF membrane, ZIF-68. The final objective is to study in tandem the high-pressure gas separation behavior of MOF-5 and ZIF-68 in binary gas systems of both CO2/N2 and CO2/CH4.

Continuous ZIF-68 membranes were synthesized via the reactive seeding method and the modified reactive seeding method. These membranes, as with the MOF-5 membranes synthesized herein, both showed adherence to Knudsen diffusion, indicating limited defects. Organic solvent experiments indicated that MOF-5 and ZIF-68 were stable in a variety of organic solvents, but both showed reductions in permeation flux of the tested molecules. These reductions were attributed to fouling and found to be cumulative up until a saturation of available bonding sites for molecules was reached and stable pervaporation permeances were reached for both. Gas separation behavior for MOF-5 showed direct dependence on the CO2 partial pressure and the overall feed pressure, while ZIF-68 did not show similar behavior. Differences in separation behavior are attributable to orientation of the ZIF-68 membranes.
ContributorsKasik, Alexandra Marie (Author) / Lin, Jerry (Thesis advisor) / Tasooji, Amaneh (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2015