Matching Items (5)
Filtering by

Clear all filters

157157-Thumbnail Image.png
Description
Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation

Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation of the formation process of MOF membrane, framework defects, and two-dimensional (2D) MOFs, aiming to explore the answers for three critical questions: (1) how to obtain a continuous MOF membrane, (2) how defects form in MOF framework, and (3) how to obtain isolated 2D MOFs. To solve the first problem, the accumulated protons in the MOF synthesis solution is proposed to be the key factor preventing the continuous growth among Universitetet I Oslo-(UiO)-66 crystals. The hypothesis is verified by the growth reactivation under the addition of deprotonating agent. As long as the protons were sufficiently coordinated by the deprotonating agent, the continuous growth of UiO-66 is guaranteed. Moreover, the modulation effect can impact the coordination equilibrium so that an oriented growth of UiO-66 film was achieved in membrane structures. To find the answer for the second problem, the defect formation mechanism in UiO-66 was investigated and the formation of missing-cluster (MC) defects is attributed to the partially-deprotonated ligands. Experimental results show the number of MC defects is sensitive to the addition of deprotonating agent, synthesis temperature, and reactant concentration. Pore size distribution allows an accurate and convenient characterization of the defects. Results show that these defects can cause significant deviations of its pore size distribution from the perfect crystal. The study of the third questions is based on the established bi-phase synthesis method, a facile synthesis method is adopted for the production of high quality 2D MOFs in large scale. Here, pyridine is used as capping reagent to prevent the interplanar hydrogen bond formation. Meanwhile, formic acid and triethylamine as modulator and deprotonating agent to balance the anisotropic growth, crystallinity, and yield in the 2D MOF synthesis. As a result, high quality 2D zinc-terephthalic acid (ZnBDC) and copper-terephthalic acid (CuBDC) with extraordinary aspect ratio samples were successfully synthesized.
ContributorsShan, Bohan (Author) / Mu, Bin (Thesis advisor) / Forzani, Erica (Committee member) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2019
136987-Thumbnail Image.png
Description
In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests

In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests and salt rejection tests were performed, and the data analyzed to yield approximation of separated flow through zeolites and interfaces. This work concludes the more work is required to bring the model system into a functioning state. New polymer selections and new techniques to produce the membrane system are described for future work.
ContributorsShabilla, Andrew Daniel (Author) / Lind, Mary Laura (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
149446-Thumbnail Image.png
Description
Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are mature, but still have room for improvement. This work focused on the synthesis of amine-modified aerogels and metal-organic framework-5 (MOF-5) membranes for CO2 separation. A

Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are mature, but still have room for improvement. This work focused on the synthesis of amine-modified aerogels and metal-organic framework-5 (MOF-5) membranes for CO2 separation. A series of solid sorbents were synthesized by functionalizing amines on the surface of silica aerogels. This was done by three coating methods: physical adsorption, magnetically assisted impact coating (MAIC) and atomic layer deposition (ALD). CO2 adsorption capacity of the sorbents was measured at room temperature in a Cahn microbalance. The sorbents synthesized by physical adsorption show the largest CO2 adsorption capacity (1.43-1.63 mmol CO2/g). An additional sorbent synthesized by ALD on hydrophilic aerogels at atmospheric pressures shows an adsorption capacity of 1.23 mmol CO2/g. Studies on one amine-modified sorbent show that the powder is of agglomerate bubbling fluidization (ABF) type. The powder is difficult to fluidize and has limited bed expansion. The ultimate goal is to configure the amine-modified sorbents in a micro-jet assisted gas fluidized bed to conduct adsorption studies. MOF-5 membranes were synthesized on α-alumina supports by two methods: in situ synthesis and secondary growth synthesis. Characterization by scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) show that the membranes prepared by both methods have a thickness of 14-16 μm, and a MOF-5 crystal size of 15-25 μm with no apparent orientation. Single gas permeation results indicate that the gas transport through both membranes is determined by a combination of Knudsen diffusion and viscous flow. The contribution of viscous flow indicates that the membranes have defects.
ContributorsRosa, Teresa M (Author) / Lin, Jerry (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Dai, Lenore (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2010
154238-Thumbnail Image.png
Description
ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2.

ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2. These membranes offer very tangible potential to separate CO2 in a wide array of industrially relevant separation processes, such as the separation from CO2 in flue gas emissions, as well as the sweetening of methane.

By virtue of this, the purpose of this dissertation is to synthesize and characterize two linear large-pore MOF membranes, MOF-5 and ZIF-68, and to study their gas separation properties in binary mixtures of CO¬2/N2 and CO2/CH4. The three main objectives researched are as follows. The first is to study the pervaporation behavior and stability of MOF-5; this is imperative because although MOF-5 exhibits desirable adsorption and separation characteristics, it is very unstable in atmospheric conditions. In determining its stability and behavior in pervaporation, this material can be utilized in conditions wherein atmospheric levels of moisture can be avoided. The second objective is to synthesize, optimize and characterize a linear, more stable MOF membrane, ZIF-68. The final objective is to study in tandem the high-pressure gas separation behavior of MOF-5 and ZIF-68 in binary gas systems of both CO2/N2 and CO2/CH4.

Continuous ZIF-68 membranes were synthesized via the reactive seeding method and the modified reactive seeding method. These membranes, as with the MOF-5 membranes synthesized herein, both showed adherence to Knudsen diffusion, indicating limited defects. Organic solvent experiments indicated that MOF-5 and ZIF-68 were stable in a variety of organic solvents, but both showed reductions in permeation flux of the tested molecules. These reductions were attributed to fouling and found to be cumulative up until a saturation of available bonding sites for molecules was reached and stable pervaporation permeances were reached for both. Gas separation behavior for MOF-5 showed direct dependence on the CO2 partial pressure and the overall feed pressure, while ZIF-68 did not show similar behavior. Differences in separation behavior are attributable to orientation of the ZIF-68 membranes.
ContributorsKasik, Alexandra Marie (Author) / Lin, Jerry (Thesis advisor) / Tasooji, Amaneh (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2015