Matching Items (2)
Filtering by

Clear all filters

136433-Thumbnail Image.png
Description
This paper uses network theory to simulate Nash equilibria for selfish travel within a traffic network. Specifically, it examines the phenomenon of Braess's Paradox, the counterintuitive occurrence in which adding capacity to a traffic network increases the social costs paid by travelers in a new Nash equilibrium. It also employs

This paper uses network theory to simulate Nash equilibria for selfish travel within a traffic network. Specifically, it examines the phenomenon of Braess's Paradox, the counterintuitive occurrence in which adding capacity to a traffic network increases the social costs paid by travelers in a new Nash equilibrium. It also employs the measure of the price of anarchy, a ratio between the social cost of the Nash equilibrium flow through a network and the socially optimal cost of travel. These concepts are the basis of the theory behind undesirable selfish routing to identify problematic links and roads in existing metropolitan traffic networks (Youn et al., 2008), suggesting applicative potential behind the theoretical questions this paper attempts to answer. New topologies of networks which generate Braess's Paradox are found. In addition, the relationship between the number of nodes in a network and the number of occurrences of Braess's Paradox, and the relationship between the number of nodes in a network and a network's price of anarchy distribution are studied.
ContributorsChotras, Peter Louis (Author) / Armbruster, Dieter (Thesis director) / Lanchier, Nicolas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2015-05
132289-Thumbnail Image.png
Description
Since Abdulkadiroglu and Sonmez’s influential paper in 2003 that
merges school choice and mechanism design, research in the rapidly
growing school choice literature has been mainly focused on the
design of mechanisms with desirable properties or more realistic
assumptions. However, lab experiments often show that subjects do
not report preferences according to the experimenters’ expectation,
and

Since Abdulkadiroglu and Sonmez’s influential paper in 2003 that
merges school choice and mechanism design, research in the rapidly
growing school choice literature has been mainly focused on the
design of mechanisms with desirable properties or more realistic
assumptions. However, lab experiments often show that subjects do
not report preferences according to the experimenters’ expectation,
and the experiments rarely provide an in-depth analysis of why the
subjects behave in such confounding ways. My thesis formulates
preference reporting in school choice as a game by incorporating a
payoff schedule and proposes mixed strategy Nash equilibrium as a
way to predict preference reporting.
ContributorsHsieh, Yee-Yang (Author) / Foster, William (Thesis director) / Douglas, Kacey (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05