Matching Items (11)
Filtering by

Clear all filters

152084-Thumbnail Image.png
Description
This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to

This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to water appropriation and infrastructure provisioning decision that generates violent conflicts between users. Since there is not an agreed and concrete criteria to assess "sustainability" I used economic efficiency as my evaluative criteria because, even though this is not a sufficient condition to achieve sustainability it is a necessary one, and thus achieving economic efficiency is moving towards sustainable outcomes. Water management in the basin is far from being economic efficient which means that there is some room for improving social welfare. Previous studies of the region have successfully described the symptoms of this problem; however, they did not focus their study on identifying the causes of the problem. In this study, I describe and analyze how different rules and norms (institutions) define farmers behaviors related to water use. For this, I use the Institutional Analysis and Development framework and a dynamic game theory model to analyze how biophysical attributes, community attributes and rules of the system combined with other factors, can affect farmers actions in regard to water use and affect the sustainability of water resources. Results show that water rights are the factor that is fundamental to the problem. Then, I present an outline for policy recommendation, which includes a revision of water rights and related rules and policies that could increase the social benefits with the use of compensation mechanisms to reach economic efficiency. Results also show that commonly proposed solutions, as switch to less water intensive and more added value crops, improvement in the agronomic and entrepreneurial knowledge, or increases in water tariffs, can mitigate or exacerbate the loss of benefits that come from the poor incentives in the system; but they do not change the nature of the outcome.
ContributorsRubinos, Cathy (Author) / Eakin, Hallie (Committee member) / Abbot, Joshua K (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2013
151230-Thumbnail Image.png
Description
What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to

What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to solve the Dirac equation in the setting where relativistic particles can tunnel between two symmetric cavities through a potential barrier, chaotic cavities are found to suppress the spread in the tunneling rate. Tunneling rate for any given energy assumes a wide range that increases with the energy for integrable classical dynamics. However, for chaotic underlying dynamics, the spread is greatly reduced. A remarkable feature, which is a consequence of Klein tunneling, arise only in relativistc quantum systems that substantial tunneling exists even for particle energy approaching zero. Similar results are found in graphene tunneling devices, implying high relevance of relativistic quantum chaos to the development of such devices. Wave propagation through random media occurs in many physical systems, where interesting phenomena such as branched, fracal-like wave patterns can arise. The generic origin of these wave structures is currently a matter of active debate. It is of fundamental interest to develop a minimal, paradigmaticmodel that can generate robust branched wave structures. In so doing, a general observation in all situations where branched structures emerge is non-Gaussian statistics of wave intensity with an algebraic tail in the probability density function. Thus, a universal algebraic wave-intensity distribution becomes the criterion for the validity of any minimal model of branched wave patterns. Coexistence of competing species in spatially extended ecosystems is key to biodiversity in nature. Understanding the dynamical mechanisms of coexistence is a fundamental problem of continuous interest not only in evolutionary biology but also in nonlinear science. A continuous model is proposed for cyclically competing species and the effect of the interplay between the interaction range and mobility on coexistence is investigated. A transition from coexistence to extinction is uncovered with a non-monotonic behavior in the coexistence probability and switches between spiral and plane-wave patterns arise. Strong mobility can either promote or hamper coexistence, while absent in lattice-based models, can be explained in terms of nonlinear partial differential equations.
ContributorsNi, Xuan (Author) / Lai, Ying-Cheng (Thesis advisor) / Huang, Liang (Committee member) / Yu, Hongbin (Committee member) / Akis, Richard (Committee member) / Arizona State University (Publisher)
Created2012
156315-Thumbnail Image.png
Description
Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting

of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and

Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting

of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and risk pooling,

agent-based simulations are conducted to explore socially optimal transfer policies

and sharing network structures, kinetic exchange models that utilize tools from the kinetic

theory of gas dynamics are utilized to characterize the wealth distribution of an NBT economy,

and a variant of repeated prisoner’s dilemma is analyzed to determine whether and

why individuals would participate in such a system of reciprocal altruism.

From agent-based simulation and kinetic exchange models, it is found that regressive

NBT wealth redistribution acts as a cutting stock optimization heuristic that most efficiently

matches deficits to surpluses to improve short-term survival; however, progressive

redistribution leads to a wealth distribution that is more stable in volatile environments and

therefore is optimal for long-term survival. Homogeneous sharing networks with low variance

in degree are found to be ideal for maintaining community viability as the burden and

benefit of NBTs is equally shared. Also, phrasing NBTs as a survivor’s dilemma reveals

parameter regions where the repeated game becomes equivalent to a stag hunt or harmony

game, and thus where cooperation is evolutionarily stable.
ContributorsKayser, Kirk (Author) / Armbruster, Dieter (Thesis advisor) / Lampert, Adam (Committee member) / Ringhofer, Christian (Committee member) / Motsch, Sebastien (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
156751-Thumbnail Image.png
Description
In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at risk and also lead to user reluctance in accepting services or sharing data. This dissertation first investigates privacy sensitive consumer-retailers/service providers interactions under different scenarios, and then focuses on a unified framework for various information-theoretic privacy and privacy mechanisms that can be learned directly from data.

Existing approaches such as differential privacy or information-theoretic privacy try to quantify privacy risk but do not capture the subjective experience and heterogeneous expression of privacy-sensitivity. The first part of this dissertation introduces models to study consumer-retailer interaction problems and to better understand how retailers/service providers can balance their revenue objectives while being sensitive to user privacy concerns. This dissertation considers the following three scenarios: (i) the consumer-retailer interaction via personalized advertisements; (ii) incentive mechanisms that electrical utility providers need to offer for privacy sensitive consumers with alternative energy sources; (iii) the market viability of offering privacy guaranteed free online services. We use game-theoretic models to capture the behaviors of both consumers and retailers, and provide insights for retailers to maximize their profits when interacting with privacy sensitive consumers.

Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. In the second part, a novel context-aware privacy framework called generative adversarial privacy (GAP) is introduced. Inspired by recent advancements in generative adversarial networks, GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. For appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. Both synthetic and real-world datasets are used to show that GAP can greatly reduce the adversary's capability of inferring private information at a small cost of distorting the data.
ContributorsHuang, Chong (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Nedich, Angelia (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
136692-Thumbnail Image.png
Description
One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only

One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only by drastic, government-mandated social reforms, while Ostrom's empirical work demonstrates that community-scale collaboration can circumvent tragedy without any elaborate outside intervention. Though more optimistic, Ostrom's work provides scant insight into larger-scale dilemmas such as climate change. Consequently, it remains unclear if the sustainable management of global resources is possible without significant government mediation. To investigate, we conducted two game theoretic experiments that challenged students in different countries to collaborate digitally and manage a hypothetical common resource. One experiment involved students attending Arizona State University and the Rochester Institute of Technology in the US and Mountains of the Moon University in Uganda, while the other included students at Arizona State and the Management Development Institute in India. In both experiments, students were randomly assigned to one of three production roles: Luxury, Intermediate, and Subsistence. Students then made individual decisions about how many units of goods they wished to produce up to a set maximum per production class. Luxury players gain the most profit (i.e. grade points) per unit produced, but they also emit the most externalities, or social costs, which directly subtract from the profit of everybody else in the game; Intermediate players produce a medium amount of profit and externalities per unit, and Subsistence players produce a low amount of profit and externalities per unit. Variables influencing and/or inhibiting collaboration were studied using pre- and post-game surveys. This research sought to answer three questions: 1) Are international groups capable of self-organizing in a way that promotes sustainable resource management?, 2) What are the key factors that inhibit or foster collective action among international groups?, and 3) How well do Hardin's theories and Ostrom's empirical models predict the observed behavior of students in the game? The results of gameplay suggest that international cooperation is possible, though likely sub-optimal. Statistical analysis of survey data revealed that heterogeneity and levels of trust significantly influenced game behavior. Specific traits of heterogeneity among students found to be significant were income, education, assigned production role, number of people in one's household, college class, college major, and military service. Additionally, it was found that Ostrom's collective action framework was a better predictor of game outcome than Hardin's theories. Overall, this research lends credence to the plausibility of international cooperation in tragedy of the commons scenarios such as climate change, though much work remains to be done.
ContributorsStanton, Albert Grayson (Author) / Clark, Susan Spierre (Thesis director) / Seager, Thomas (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
154488-Thumbnail Image.png
Description
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several interesting results are derived, and the differences between the interacting particle system model and the replicator dynamics are emphasized. The terms selfish and altruistic are defined according to a certain ordering of payoff parameters. In these terms, the replicator dynamics are simple: coexistence occurs if both strategies are altruistic; the selfish strategy wins if one strategy is selfish and the other is altruistic; and there is bistability if both strategies are selfish. Under the best-response update process, it is shown that there is no bistability region. Instead, in the presence of at least one selfish strategy, the most selfish strategy wins, while there is still coexistence if both strategies are altruistic. Under the death-birth update process, it is shown that regardless of the range of interactions and the dimension, regions of coexistence and bistability are both reduced. Additionally, coexistence occurs in some parameter region for large enough interaction ranges. Finally, in contrast with the replicator equation and the best-response update process, cooperators can win in the prisoner's dilemma for the death-birth process in one-dimensional nearest-neighbor interactions.
ContributorsEvilsizor, Stephen (Author) / Lanchier, Nicolas (Thesis advisor) / Kang, Yun (Committee member) / Motsch, Sebastien (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2016
152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
ContributorsYang, Dejun (Author) / Xue, Guoliang (Thesis advisor) / Richa, Andrea (Committee member) / Sen, Arunabha (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
168442-Thumbnail Image.png
Description
For fifty years, inquiry has attempted to capture how groups of people experience microaggression phenomena through multiple methodological and analytic applications grounded in psychology-influenced frameworks. Yet, despite theoretical advancements, the phenomenon has met criticisms trivializing its existence, falsifiability, and social significance. Unpacking possible interactive factors of a microaggressive moment invites

For fifty years, inquiry has attempted to capture how groups of people experience microaggression phenomena through multiple methodological and analytic applications grounded in psychology-influenced frameworks. Yet, despite theoretical advancements, the phenomenon has met criticisms trivializing its existence, falsifiability, and social significance. Unpacking possible interactive factors of a microaggressive moment invites a revisitation of the known and unknown pragmatic conditions that may produce and influence its discomforting situational “content.” This study employs an intentional, game-theoretic methodology based on brief, publicly-recorded, everyday conversation segments. Conversation segments of social interactions provide a means to conduct a mathematically-solid, computationally-tractable analysis of explaining what is happening during encounters where disability microaggressions are likely the result of partial (non)cooperation between communicators. Such analysis extends the microaggression research program (MRP) by: (1) proposing theoretical consequences for conversational repair phenomena, algorithmic programming, and experimental designs in negotiation research; and (2) outlining practical approaches for preventing microaggressions with new communication pedagogy, anti-oppression/de-escalation training programs, and calculable, focus-oriented psychotherapy. It concludes with an invitation for scholars to “be” in ambiguity so that they may speculate possible trajectories for the study of microaggressions as a communicative phenomenon.
ContributorsReutlinger, Corey Jon (Author) / de la Garza, Sarah Amira (Thesis advisor) / Alberts, Janet (Committee member) / Lanchier, Nicolas (Committee member) / Cherney, James L. (Committee member) / Arizona State University (Publisher)
Created2021
187813-Thumbnail Image.png
Description
The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem

The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem explores the impact of social learning in collecting and trading unverifiable information where a data collector purchases data from users through a payment mechanism. Each user starts with a personal signal which represents the knowledge about the underlying state the data collector desires to learn. Through social interactions, each user also acquires additional information from his neighbors in the social network. It is revealed that both the data collector and the users can benefit from social learning which drives down the privacy costs and helps to improve the state estimation for a given total payment budget. In the second half, a federated learning scheme to train a global learning model with strategic agents, who are not bound to contribute their resources unconditionally, is considered. Since the agents are not obliged to provide their true stochastic gradient updates and the server is not capable of directly validating the authenticity of reported updates, the learning process may reach a noncooperative equilibrium. First, the actions of the agents are assumed to be binary: cooperative or defective. If the cooperative action is taken, the agent sends a privacy-preserved version of stochastic gradient signal. If the defective action is taken, the agent sends an arbitrary uninformative noise signal. Furthermore, this setup is extended into the scenarios with more general actions spaces where the quality of the stochastic gradient updates have a range of discrete levels. The proposed methodology evaluates each agent's stochastic gradient according to a reference gradient estimate which is constructed from the gradients provided by other agents, and rewards the agent based on that evaluation.
ContributorsAkbay, Abdullah Basar (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Committee member) / Kosut, Oliver (Committee member) / Ewaisha, Ahmed (Committee member) / Arizona State University (Publisher)
Created2023
161749-Thumbnail Image.png
Description
Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time

Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time basis. Previous studies in the parameter estimation made the assumption that the human parameters are known by the robot; but such may not be the case and there exists uncertainty in the modeling of the human rewards as well as human's modeling of the robot's rewards. The proposed method, empathetic estimation, is tested and compared with the ``non-empathetic'' estimation from the existing works. The case studies are conducted in an uncontrolled intersection with two agents attempting to pass efficiently. Results have shown that in the case of both agents having inconsistent belief of the other agent's parameters, the empathetic agent performs better at estimating the parameters and has higher reward values, which indicates the scenarios when empathy is essential: when agent's initial belief is mismatched from the true parameters/intent of the agents.
ContributorsChen, Yi (Author) / Ren, Yi (Thesis advisor) / Zhang, Wenlong (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2021