Matching Items (7)
Filtering by

Clear all filters

152956-Thumbnail Image.png
Description
Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However,

Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However, as one of the most creative networking technologies, Software-Defined Networking (SDN) is rarely used to implement IDPS in the cloud computing environment because the lack of comprehensive development framework and processing flow. Simply migration from traditional IDS/IPS systems to SDN environment are not effective enough for detecting and defending malicious attacks. Hence, in this thesis, we present an IPS development framework to help user easily design and implement their defensive systems in cloud system by SDN technology. This framework enables SDN approaches to enhance the system security and performance. A Traffic Information Platform (TIP) is proposed as the cornerstone with several upper layer security modules such as Detection, Analysis and Prevention components. Benefiting from the flexible, compatible and programmable features of SDN, Customized Detection Engine, Network Topology Finder, Source Tracer and further user-developed security appliances are plugged in our framework to construct a SDN-based defensive system. Two main categories Python-based APIs are designed to support developers for further development. This system is designed and implemented based on the POX controller and Open vSwitch in the cloud computing environment. The efficiency of this framework is demonstrated by a sample IPS implementation and the performance of our framework is also evaluated.
ContributorsXiong, Zhengyang (Author) / Huang, Dijiang (Thesis advisor) / Xue, Guoliang (Committee member) / Dalvucu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014
152849-Thumbnail Image.png
Description
New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.
ContributorsAlipourfard, Omid (Author) / Syrotiuk, Violet R. (Thesis advisor) / Richa, Andréa W. (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2014
153029-Thumbnail Image.png
Description
Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI

Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI and PlanetLab have further improved the current Internet-based resource provisioning system by allowing end users to construct a virtual networking environment. By archiving the similar goal but with more flexible and efficient performance, I present the design and implementation of MobiCloud that is a geo-distributed mobile cloud computing platform, and G-PLaNE that focuses on how to construct the virtual networking environment upon the self-designed resource provisioning system consisting of multiple geo-distributed clusters. Furthermore, I conduct a comprehensive study to layout existing Mobile Cloud Computing (MCC) service models and corresponding representative related work. A new user-centric mobile cloud computing service model is proposed to advance the existing mobile cloud computing research.

After building the MobiCloud, G-PLaNE and studying the MCC model, I have been using Software Defined Networking (SDN) approaches to enhance the system security in the cloud virtual networking environment. I present an OpenFlow based IPS solution called SDNIPS that includes a new IPS architecture based on Open vSwitch (OVS) in the cloud software-based networking environment. It is enabled with elasticity service provisioning and Network Reconfiguration (NR) features based on POX controller. Finally, SDNIPS demonstrates the feasibility and shows more efficiency than traditional approaches through a thorough evaluation.

At last, I propose an OpenFlow-based defensive module composition framework called CloudArmour that is able to perform query, aggregation, analysis, and control function over distributed OpenFlow-enabled devices. I propose several modules and use the DDoS attack as an example to illustrate how to composite the comprehensive defensive solution based on CloudArmour framework. I introduce total 20 Python-based CloudArmour APIs. Finally, evaluation results prove the feasibility and efficiency of CloudArmour framework.
ContributorsXing, Tianyi (Author) / Huang, Dijiang (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Medhi, Deepankar (Committee member) / Arizona State University (Publisher)
Created2014
136692-Thumbnail Image.png
Description
One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only

One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only by drastic, government-mandated social reforms, while Ostrom's empirical work demonstrates that community-scale collaboration can circumvent tragedy without any elaborate outside intervention. Though more optimistic, Ostrom's work provides scant insight into larger-scale dilemmas such as climate change. Consequently, it remains unclear if the sustainable management of global resources is possible without significant government mediation. To investigate, we conducted two game theoretic experiments that challenged students in different countries to collaborate digitally and manage a hypothetical common resource. One experiment involved students attending Arizona State University and the Rochester Institute of Technology in the US and Mountains of the Moon University in Uganda, while the other included students at Arizona State and the Management Development Institute in India. In both experiments, students were randomly assigned to one of three production roles: Luxury, Intermediate, and Subsistence. Students then made individual decisions about how many units of goods they wished to produce up to a set maximum per production class. Luxury players gain the most profit (i.e. grade points) per unit produced, but they also emit the most externalities, or social costs, which directly subtract from the profit of everybody else in the game; Intermediate players produce a medium amount of profit and externalities per unit, and Subsistence players produce a low amount of profit and externalities per unit. Variables influencing and/or inhibiting collaboration were studied using pre- and post-game surveys. This research sought to answer three questions: 1) Are international groups capable of self-organizing in a way that promotes sustainable resource management?, 2) What are the key factors that inhibit or foster collective action among international groups?, and 3) How well do Hardin's theories and Ostrom's empirical models predict the observed behavior of students in the game? The results of gameplay suggest that international cooperation is possible, though likely sub-optimal. Statistical analysis of survey data revealed that heterogeneity and levels of trust significantly influenced game behavior. Specific traits of heterogeneity among students found to be significant were income, education, assigned production role, number of people in one's household, college class, college major, and military service. Additionally, it was found that Ostrom's collective action framework was a better predictor of game outcome than Hardin's theories. Overall, this research lends credence to the plausibility of international cooperation in tragedy of the commons scenarios such as climate change, though much work remains to be done.
ContributorsStanton, Albert Grayson (Author) / Clark, Susan Spierre (Thesis director) / Seager, Thomas (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
153754-Thumbnail Image.png
Description
Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files.

Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files. The loss rate of incoming log packets is high due to the incoming rate of the data. The Rsyslog servers are overwhelmed by the continuous data stream. To solve this problem a software defined networking (SDN) based load balancer is designed to perform a transport-level load balancing over the incoming load to Rsyslog servers. In this solution the load is forwarded to one Rsyslog server at a time, according to one of a Round-Robin, Random, or Load-Based policy. This gives time to other servers to process the data they have received and prevent them from being overwhelmed. The evaluation of the proposed solution is conducted a physical testbed with the same data feed as the commercial solution. The results suggest that the SDN-based load balancer is competitive with the commercial load balancer. Replacing the software OpenFlow switch with a hardware switch is likely to further improve the results.
ContributorsGhaffarinejad, Ashkan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Xue, Guoliang (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
ContributorsYang, Dejun (Author) / Xue, Guoliang (Thesis advisor) / Richa, Andrea (Committee member) / Sen, Arunabha (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
158720-Thumbnail Image.png
Description
The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known vulnerabilities are patched; moreover, the attacker, with reconnaissance on their

The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known vulnerabilities are patched; moreover, the attacker, with reconnaissance on their side, will eventually discover and leverage them. To take away the attacker's inherent advantage of reconnaissance, researchers have proposed the notion of proactive defenses such as Moving Target Defense (MTD) in cyber-security. In this thesis, I make three key contributions that help to improve the effectiveness of MTD.

First, I argue that naive movement strategies for MTD systems, designed based on intuition, are detrimental to both security and performance. To answer the question of how to move, I (1) model MTD as a leader-follower game and formally characterize the notion of optimal movement strategies, (2) leverage expert-curated public data and formal representation methods used in cyber-security to obtain parameters of the game, and (3) propose optimization methods to infer strategies at Strong Stackelberg Equilibrium, addressing issues pertaining to scalability and switching costs. Second, when one cannot readily obtain the parameters of the game-theoretic model but can interact with a system, I propose a novel multi-agent reinforcement learning approach that finds the optimal movement strategy. Third, I investigate the novel use of MTD in three domains-- cyber-deception, machine learning, and critical infrastructure networks. I show that the question of what to move poses non-trivial challenges in these domains. To address them, I propose methods for patch-set selection in the deployment of honey-patches, characterize the notion of differential immunity in deep neural networks, and develop optimization problems that guarantee differential immunity for dynamic sensor placement in power-networks.
ContributorsSengupta, Sailik (Author) / Kambhampati, Subbarao (Thesis advisor) / Bao, Tiffany (Youzhi) (Committee member) / Huang, Dijiang (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2020