Matching Items (7)
Filtering by

Clear all filters

151374-Thumbnail Image.png
Description
ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year

ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kWdc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kWac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.
ContributorsOlakonu, Kolapo (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
153107-Thumbnail Image.png
Description
To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area.

The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling loss of PV modules mounted on a mock rooftop at ASU-PRL, a detailed soiling modeling was obtained. Same setup was also used for other soiling-related investigations like studying the effect of soiling density on angle of incidence (AOI) dependence, the climatological relevance (CR) to soiling, and spatial variation of the soiling loss. During the first dry season (May to June), the daily soiling rate was found as -0.061% for 20o tilted modules. Based on the obtained soiling rate, cleaning PV modules, when the soiling is just due to dust on 20o tilted residential arrays, was found economically not justifiable.

The second study focuses on evaluating the soiling loss in different locations of Metro Phoenix area of Arizona. The main goal behind the second study was to validate the daily soiling rate obtained from the mock rooftop setup in the first part of this thesis. By collaborating with local solar panel cleaning companies, soiling data for six residential systems in 5 different cities in and around Phoenix was collected, processed, and analyzed. The range of daily soiling rate in the Phoenix area was found as -0.057% to -0.085% for 13-28o tilted arrays. The soiling rate found in the first part of the thesis (-0.061%) for 20o tilted array, was validated since it falls within the range obtained from the second part of the thesis.
ContributorsNaeem, Mohammad Hussain (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2014
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
ContributorsJaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2011
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
156589-Thumbnail Image.png
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV

The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
ContributorsLeslie, Joswin (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
154659-Thumbnail Image.png
Description
In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due

In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) measurements, non-intrusive measurements are preferable to obtain these two key data since owners do not want to lose money by turning their systems off, as well as safety and breach of installer warranty terms. In order to understand the degradation behavior of PV systems, there is a need for highly accurate performance modeling. In this thesis 39 commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop an understanding on the rate and trend of degradation seen by crystalline silicon PV modules. A total of three degradation rates were calculated for each power plant based on three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. These methods were validated from in field I-V measurements obtained by Arizona State University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate performance models, the generated degradation rates may be used by the system owners to claim a warranty from PV module manufactures or other responsible parties.
ContributorsRaupp, Christopher (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
157910-Thumbnail Image.png
Description
The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease due to potential induced degradation, etc. Several PV modules together in series makes up a string, and in a power plant there are a number of these strings in parallel which can be referred to as an array. Ideally, PV modules in a string should be identically matched to attain maximum power output from the entire string. Any underperforming module or mismatch among modules within a string can reduce the power output. The goal of this project is to quickly identify and quantitatively determine the underperforming module(s) in an operating string without the use of an I-V curve tracer, irradiance sensor or temperature sensor. This goal was achieved by utilizing Radiovoltmeters (RVM). In this project, it is demonstrated that the voltages at maximum power point (Vmax) of all the individual modules in a string can be simultaneously and quantitatively obtained using RVMs at a single irradiance, single module operating temperature, single spectrum and single angle of incidence. By combining these individual module voltages (Vmax) with the string current (Imax) using a Hall sensor, the power output of individual modules can be obtained, quickly and quantitatively.
ContributorsTahghighi, Arash (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2019