## Matching Items (2)

#### Looking at COVID-19 as a Factor in Insurance Loss Reserving Models

Description

A factor accounting for the COVID-19 pandemic was added to a generalized linear model to more accurately predict unpaid claims. COVID-19 has affected not just healthcare, but all sectors of the economy. Because of this, whether or not an automobile insurance claim is filed during the pandemic needs to be

A factor accounting for the COVID-19 pandemic was added to a generalized linear model to more accurately predict unpaid claims. COVID-19 has affected not just healthcare, but all sectors of the economy. Because of this, whether or not an automobile insurance claim is filed during the pandemic needs to be taken into account while estimating unpaid claims. Reserve-estimating functions such as glmReserve from the “ChainLadder” package in the statistical software R were experimented with to produce their own results. Because of their insufficiency, a manual approach to building the model turned out to be the most proficient method. Utilizing the GLM function, a model was built that emulated linear regression with a factor for COVID-19. The effects of such a model are analyzed based on effectiveness and interpretablility. A model such as this would prove useful for future calculations, especially as society is now returning to a “normal” state.

ContributorsKossler, Patrick (Author) / Zicarelli, John (Thesis director) / Milovanovic, Jelena (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05

#### Linear Modeling for Insurance Ratemaking/Reserving: Modeling Loss Development Factors for Catastrophe Claims

Description

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on modeling catastrophes. Setting reserves for catastrophe losses is difficult due to their unpredictable and often long-tailed nature. Determining loss development factors (LDFs) to estimate the ultimate loss amounts for catastrophe events is one method for setting reserves. In an attempt to aid Company XYZ set more accurate reserves, the research conducted focuses on estimating LDFs for catastrophes which have already occurred and have been settled. Furthermore, the research describes the process used to build a linear model in R to estimate LDFs for Company XYZ's closed catastrophe claims from 2001 \u2014 2016. This linear model was used to predict a catastrophe's LDFs based on the age in weeks of the catastrophe during the first year. Back testing was also performed, as was the comparison between the estimated ultimate losses and actual losses. Future research consideration was proposed.

ContributorsSwoverland, Robert Bo (Author) / Milovanovic, Jelena (Thesis director) / Zicarelli, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05