Matching Items (3)

Filtering by

Clear all filters

133403-Thumbnail Image.png

Using Generalized Linear Models to Develop Loss Triangles in Reserving

Description

The use of generalized linear models in loss reserving is not new; many statistical models have been developed to fit the loss data gathered by various insurance companies. The most popular models belong to what Glen Barnett and Ben Zehnwirth

The use of generalized linear models in loss reserving is not new; many statistical models have been developed to fit the loss data gathered by various insurance companies. The most popular models belong to what Glen Barnett and Ben Zehnwirth in "Best Estimates for Reserves" call the "extended link ratio family (ELRF)," as they are developed from the chain ladder algorithm used by actuaries to estimate unpaid claims. Although these models are intuitive and easy to implement, they are nevertheless flawed because many of the assumptions behind the models do not hold true when fitted with real-world data. Even more problematically, the ELRF cannot account for environmental changes like inflation which are often observed in the status quo. Barnett and Zehnwirth conclude that a new set of models that contain parameters for not only accident year and development period trends but also payment year trends would be a more accurate predictor of loss development. This research applies the paper's ideas to data gathered by Company XYZ. The data was fitted with an adapted version of Barnett and Zehnwirth's new model in R, and a trend selection algorithm was developed to accompany the regression code. The final forecasts were compared to Company XYZ's booked reserves to evaluate the predictive power of the model.

Contributors

Agent

Created

Date Created
2018-05

133413-Thumbnail Image.png

Linear Modeling for Insurance Ratemaking/Reserving: Modeling Loss Development Factors for Catastrophe Claims

Description

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on modeling catastrophes. Setting reserves for catastrophe losses is difficult due to their unpredictable and often long-tailed nature. Determining loss development factors (LDFs) to estimate the ultimate loss amounts for catastrophe events is one method for setting reserves. In an attempt to aid Company XYZ set more accurate reserves, the research conducted focuses on estimating LDFs for catastrophes which have already occurred and have been settled. Furthermore, the research describes the process used to build a linear model in R to estimate LDFs for Company XYZ's closed catastrophe claims from 2001 \u2014 2016. This linear model was used to predict a catastrophe's LDFs based on the age in weeks of the catastrophe during the first year. Back testing was also performed, as was the comparison between the estimated ultimate losses and actual losses. Future research consideration was proposed.

Contributors

Agent

Created

Date Created
2018-05

Automating by Developing Model Components for the Insurance Ratemaking Actuarial Procedures

Description

The objective of this study is to build a model using R and RStudio that automates ratemaking procedures for Company XYZ’s actuaries in their commercial general liability pricing department. The purpose and importance of this objective is to allow actuaries

The objective of this study is to build a model using R and RStudio that automates ratemaking procedures for Company XYZ’s actuaries in their commercial general liability pricing department. The purpose and importance of this objective is to allow actuaries to work more efficiently and effectively by using this model that outputs the results they otherwise would have had to code and calculate on their own. Instead of spending time working towards these results, the actuaries can analyze the findings, strategize accordingly, and communicate with business partners. The model was built from R code that was later transformed to Shiny, a package within RStudio that allows for the build-up of interactive web applications. The final result is a Shiny app that first takes in multiple datasets from Company XYZ’s data warehouse and displays different views of the data in order for actuaries to make selections on development and trend methods. The app outputs the re-created ratemaking exhibits showing the resulting developed and trended loss and premium as well as the experience-based indicated rate level change based on prior selections. The ratemaking process and Shiny app functionality will be detailed in this report.

Contributors

Agent

Created

Date Created
2022-05