Matching Items (3)
Filtering by

Clear all filters

135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134778-Thumbnail Image.png
Description
Additive Manufacturing and 3D printing are becoming important technologies in the manufacturing sector. The benefits of this technology include complex part geometry, short lead-times, low waste, and simple user interface. However, the technology does not come without its drawbacks: mainly the removal of support structures from the component. Traditional techniques

Additive Manufacturing and 3D printing are becoming important technologies in the manufacturing sector. The benefits of this technology include complex part geometry, short lead-times, low waste, and simple user interface. However, the technology does not come without its drawbacks: mainly the removal of support structures from the component. Traditional techniques that involve sawing and cutting can be expensive and take a long time, increasing the overall price of 3D printed metal components. This paper discusses two approaches taken for dissolvable support structures in 3D printed stainless steel (17-4 PH). For the first time in powder bed fusion components, with the help of Christopher Lefky and Dr. Owen Hildreth, dissolvable support capabilities are achieved in metal prints. The first approach, direct dissolution, involves direct corrosion of the entire part, leading to support removal. This approach is not self-terminating, and leads to changes in final component geometry. The second approach involves a post-build sensitization step, which physically alters the microstructure and chemical stability of the first 100-200 microns of the metal. The component is then etched at an electric potential that will readily corrode this sensitized surface, but not the underlying base metal. An electrolytic solution of HNO3/KCl/HCl paired with an anodic bias was used for the direct dissolution approach, resulting in a loss of about 120 microns of material from the components surface. For the self-limiting approach, surface sensitization was achieve through a post build annealing step (800 C for 6 hours, air cooled) with exposure to a sodium hexacynoferrate slurry. When the slurry decomposes in the furnace, carbon atoms diffuse into the surface and precipitate a chromium-carbide, which reduces the chemical stability of the stainless steel. Etching is demonstrated in an anodic bias of HNO3/KCl. To determine proper etching potentials, open circuit potential and cyclic voltammetry experiments were run to create Potentiodynamic Polarization Curves. Further testing of the self-terminating approach was performed on a 316 stainless steel interlocking ring structure with a complex geometry. In this case, 32.5 hours of etching at anodic potentials replaced days of mechanical sawing and cutting.
ContributorsZucker, Brian Nicholas (Co-author) / Lefky, Christopher (Co-author) / Hildreth, Owen (Co-author, Thesis director) / Hsu, Keng (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12