Matching Items (3)
Filtering by

Clear all filters

166159-Thumbnail Image.png
Description

This paper will serve as a review of relevant scleractinian coral biology and genetics, discuss the ecological and biological impacts of growth anomalies in scleractinians, discuss the importance of studying this phenomena in terms of conservation, outline and discuss the processes undertaken to elucidate possible genetic markers of the growth

This paper will serve as a review of relevant scleractinian coral biology and genetics, discuss the ecological and biological impacts of growth anomalies in scleractinians, discuss the importance of studying this phenomena in terms of conservation, outline and discuss the processes undertaken to elucidate possible genetic markers of the growth anomalies, as well as discuss growth anomalies within the context of other coral disease and the anthropocene to add clarity no the subject to the oncological discussion taking place around such anomalies.

ContributorsLittle, Patrick (Author) / Maley, Carlo (Thesis director) / Metzger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
187406-Thumbnail Image.png
Description
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete

Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
ContributorsSeyedi, Seyedehsareh (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Wilson, Melissa (Committee member) / Huijben, Silvie (Committee member) / Gatenby, Robert (Committee member) / Arizona State University (Publisher)
Created2023
Description
A big part of understanding cancer is understanding the cellular environment itthrives in by analyzing it from a microecological perspective. Humans and other species are affected by different cancer types, and this highlights the notion that there may be a correlation between specific tissues and neoplasia prevalence. Research shows that humans are the

A big part of understanding cancer is understanding the cellular environment itthrives in by analyzing it from a microecological perspective. Humans and other species are affected by different cancer types, and this highlights the notion that there may be a correlation between specific tissues and neoplasia prevalence. Research shows that humans are the most susceptible to adenocarcinomas and carcinomas which include the following tissues: lungs, breast, prostate, and pancreas. Furthermore, research shows that adenocarcinoma accounts for 38.5% of all lung cancer cases, 20% of small cell carcinomas, and 2.9% of large cell carcinoma. The incidence of the most common cancer types in humans is consistently increasing annually. This study analyzes trends of tissue-specific cancers across species to examine possible contributors to vulnerability to cancer. I predicted that adenocarcinomas would be the most prevalent cancer type across the tree of life. To test this hypothesis, I reviewed over 130 species that reported equal to or greater than 50 individual necropsy pathology records across 4 classes (Mammalia, amphibia, Reptilia, Aves) and ranked them by neoplasia prevalence. This information was then organized in tables in descending order. The study’s resulting tables and data concluded that the hypothesis was correct. I found that across all species adenocarcinomas were the most common cancer type and account for 30.4% of malignancies reported among species. Future research should investigate how organ size contributes to neoplasia prevalence.
ContributorsPERAZA, ASHLEY (Author) / Maley, Carlo (Thesis advisor) / Boddy, Amy (Thesis advisor) / Baciu, Cristina (Committee member) / Arizona State University (Publisher)
Created2022