Matching Items (1)
Filtering by

Clear all filters

133582-Thumbnail Image.png
Description
Current wound closure technology is limited, and lacks key elements \u2014 such as the formation of an immediate seal \u2014 that could otherwise resolve some of the common and life threatening complications associated with certain surgeries. Previous research has produced nanosealants capable of providing that immediate seal through the use

Current wound closure technology is limited, and lacks key elements \u2014 such as the formation of an immediate seal \u2014 that could otherwise resolve some of the common and life threatening complications associated with certain surgeries. Previous research has produced nanosealants capable of providing that immediate seal through the use of laser activation with a near infrared laser. Here, we have developed a biocompatible suture utilizes the same mechanics to provide the tensile strength needed to replace or supplement existing suture lines. Laser activated tissue integrating sutures (LATIS), are shown to have 75% of the tensile strength of commercially available PGA sutures, while still exhibiting the same laser mediated localized heating effect at power densities of as low as 1.6 W/cm2. LATIS has been shown to reach the temperature ranges needed for protein interdigitation, but suffers from low wet mechanical strength. Preparatory steps or solvents for chemical crosslinking generally dehydrate LATIS sutures, causing a shriveling effect that weakens the overall mechanical strength of the suture. To resolve this, a new method of drying, by which LATIS sutures are dried under tension on a suspended platform, has been shown to decrease control suture strength, but restore the strength of chemically treated LATIS sutures to the level of control sutures or above. These promising results suggest that follow-up work with chemical cross-linkers may produce the increases in LATIS wet strength that are needed for its implementation in deeper tissue surgeries.
ContributorsChang, Andy (Author) / Rege, Kaushal (Thesis director) / Goklany, Sheba (Committee member) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05