Matching Items (6)
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
152394-Thumbnail Image.png
Description
The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of

The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of transcription factors that direct lineage decisions. The basic helix-loop-helix transcription factor, PARAXIS, is expressed in the paraxial mesoderm during vertebrate somitogenesis, where it has been shown to play a critical role in the mesenchymal-to-epithelial transition associated with somitogenesis, and the development of the hypaxial skeletal musculature and axial skeleton. In an effort to elucidate the underlying genetic mechanism by which PARAXIS regulates the musculoskeletal system, I performed a microarray-based, genome-wide analysis comparing transcription levels in the somites of Paraxis-/- and Paraxis+/+ embryos. This study revealed targets of PARAXIS involved in multiple aspects of mesenchymal-to-epithelial transition, including Fap and Dmrt2, which modulate cell-extracellular matrix adhesion. Additionally, in the epaxial dermomyotome, PARAXIS activates the expression of the integrin subunits a4 and a6, which bind fibronectin and laminin, respectively, and help organize the patterning of trunk skeletal muscle. Finally, PARAXIS activates the expression of genes required for the epithelial-to-mesenchymal transition and migration of hypaxial myoblasts into the limb, including Lbx1 and Met. Together, these data point to a role for PARAXIS in the morphogenetic control of musculoskeletal patterning.
ContributorsRowton, Megan (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2013
149531-Thumbnail Image.png
Description
Virtual environments are used for many physical rehabilitation and therapy purposes with varying degrees of success. An important feature for a therapy environment is the real-time monitoring of a participants' movement performance. Such monitoring can be used to evaluate the environment in addition to the participant's learning. Methods for monitoring

Virtual environments are used for many physical rehabilitation and therapy purposes with varying degrees of success. An important feature for a therapy environment is the real-time monitoring of a participants' movement performance. Such monitoring can be used to evaluate the environment in addition to the participant's learning. Methods for monitoring and evaluation include tracking kinematic performance as well as monitoring muscle and brain activities through EMG and EEG technology. This study aims to observe trends in individual participants' motor learning based on changes in kinematic parameters and use those parameters to characterize different types of learners. This information can then guide EEG/EMG data analysis in the future. The evaluation of motor learning using kinematic parameters of performance typically compares averages of pre- and post-data to identify patterns of changes of various parameters. A key issue with using pre- and post-data is that individual participants perform differently and have different time-courses of learning. Furthermore, different parameters can evolve at independent rates. Finally, there is great variability in the movements at early stages of learning a task. To address these issues, a combined approach is proposed using robust regression, piece-wise regression and correlation to categorize different participant's motor learning. Using the mixed reality rehabilitation system developed at Arizona State University, it was possible to engage participants in motor learning, as revealed by improvements in kinematic parameters. A combination of robust regression, piecewise regression and correlation were used to reveal trends and characterize participants based on motor learning of three kinematic parameters: trajectory error, supination error and the number of phases in the velocity profile.
ContributorsAttygalle, Suneth Satoshi (Author) / He, Jiping (Thesis advisor) / Rikakais, Thanassis (Committee member) / Iasemidis, Leonidas (Committee member) / Arizona State University (Publisher)
Created2010
132230-Thumbnail Image.png
Description
Undergraduate students taking Anatomy and Physiology may struggle with information overload due to constant memorization. The solution is to present the anatomical material in a more integrative manner. Traditional learning in the human anatomy labs requires students to be presented with the skin, bones, joints, and muscle systems throughout the

Undergraduate students taking Anatomy and Physiology may struggle with information overload due to constant memorization. The solution is to present the anatomical material in a more integrative manner. Traditional learning in the human anatomy labs requires students to be presented with the skin, bones, joints, and muscle systems throughout the semester. However, in the Human Anatomy and Physiology courses (BIO 201), students only spend 2.5 hours for the lab session in one or two weeks for each system. The traditional style used today is constructed systematically, but it does not combine the other systems and functions with it once presented to the students. As a result, the new approach will integrate the structures and functions of each system with the current one that is being introduced. The new approach is SiMoJi-B: Skin, Muscles, Joints, and Bones. SiMoJi-B will teach students the Skin, Muscles, Joints, and Bones systems following anatomical regions of the body each week. All systems are integrated using a layer visualization from the outer to the deepest layer. The integration is supported with human donor dissections. The integrative sequence will allow students to learn anatomy in a more interactive and dynamic way.
ContributorsKaroubi, Susan (Author) / Cevallos, Manuel (Thesis director) / Ferry, Lara (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132543-Thumbnail Image.png
Description
Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering was mapped and area was measured using AMIRA image processing and the trends in
these layers at the proximal, middle, and distal portions of the arms were analyzed. A total of 39
arms from 6 specimens were scanned to give 112 total imaged sections (38 proximal, 37 middle,
37 distal), from which to ascertain and study the possible differences in musculature. The
images revealed significant increases in the internal longitudinal muscle layer percentages
between the proximal and middle, proximal and distal, and middle and distal sections of the
arms. These structural differences are hypothesized to be used for rapid retraction of the distal
segment when encountering predators or noxious stimuli. In contrast, a significant decrease in
the transverse muscle layer was found when comparing the same sections. These structural
differences are hypothesized to be a result of bending behaviors during retraction. Additionally,
the internal longitudinal layer was separately studied orally, toward the sucker, and aborally,
away from the sucker. The significant differences in oral and aboral internal longitudinal
musculature in proximal, middle, and distal sections is hypothesized to support the pseudo-joint
functionality displayed in octopus fetching behaviors. The results indicate that individual
octopus arm morphology is more unique than previously thought and supports that internal
structural differences exist to support behavioral functionality.
ContributorsCummings, Sheldon Daniel (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamidreza (Committee member) / Cherry, Brian (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
172750-Thumbnail Image.png
Description

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism. The Notch signaling pathway is active in multiple aspects of somitogenesis, and it continues to be a critical regulator during myogenesis. Throughout the life of an organism, Notch signaling prevents the differentiation of muscle progenitor cells into muscle cells. Such preventions help maintain populations of progenitor cells that can remain dormant until the growth or repair of muscle is necessary, at which point the Notch signal to the muscle progenitor cells is disrupted, and the muscle progenitor cells differentiate into muscle fibers and cells. Without Notch signaling, myogenesis proceeds prematurely and dissipates before mature muscle can form.

Created2013-07-26