Matching Items (3)

Filtering by

Clear all filters

Heterogeneous Catalysis for Organic Reactions

Description

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430

Contributors

Agent

Created

Date Created
2019-05

132296-Thumbnail Image.png

Production of Biofuel from Algae and Salicornia using Hydrothermal Liquefaction (HTL) Technique

Description

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.

Contributors

Agent

Created

Date Created
2019-05

132228-Thumbnail Image.png

Production of Biofuel from Algae and Salicornia using Hydrothermal Liquefaction (HTL) Technique

Description

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.

Contributors

Agent

Created

Date Created
2019-05