Matching Items (6)
Filtering by

Clear all filters

133806-Thumbnail Image.png
Description
Introduction: Individuals with rotator cuff tears (RCT) have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). The leading joint hypothesis (LJH) suggests there is one leading joint that

Introduction: Individuals with rotator cuff tears (RCT) have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). The leading joint hypothesis (LJH) suggests there is one leading joint that creates the foundation for the entire limb motion, and there are other subordinate joints that monitor the passive interaction torque (IT) and create a net torque (NT) aiding to limb motions required for the task. This experiment hopes to establish a better understanding of joint control strategies during a wide range of arm movements. Based off of the LJH, we hypothesize that when a subject has a rotator cuff tear, their performance of planar and three- dimensional motions should be altered not only at the shoulder, which is often the leading joint, but also at other joints on the arm such as the elbow and wrist.

Methods: There were 3 groups of participants: healthy younger adults (age 21.74 ± 1.97), healthy older adult controls (age 69.53 ± 6.85), and older adults with a RCT (age 64.33 ± 4.04). All three groups completed strength testing, horizontal drawing and pointing tasks, and three-dimensional (3D) activities of daily living (ADLs). Kinematic and kinetic variables of the arm were obtained during horizontal and 3D tasks using data from 13 reflective markers placed on the arm and trunk, 8 motion capture cameras, and Cortex motion capture software (Motion Analysis Corp., Santa Rosa, CA). During these tasks, electromyography (EMG) electrodes were placed on 12 muscles along the arm that affect shoulder, elbow, and wrist rotation. Strength testing tasks were measured using a dynamometer. All strength testing and 3D tasks were completed for three trials and horizontal tasks were completed for two trials.

Results: Results of the younger adult participants showed that during the forward portion of seven 3D tasks, there were four phases of different joint control mechanics seen in a majority of the movements. These phases included active rotation of both the shoulder and the elbow joint, active rotation of the shoulder with passive rotation of the elbow, passive rotation of the shoulder with active rotation of the elbow, and passive rotation of both the shoulder and the elbow. Passive rotation during movements was a result of gravitational torque (GT) on the different segments of the arm and IT caused as a result the multi-joint structure of human limbs. The number of tested participants for the healthy older adults and RCT older adults groups is not yet high enough to produce significant results and because of this their results are not reported in this article.

Discussion: Through the available results, multiple phases were found where one or both of the joints of the arm moved passively which further supports the LJH and extends it to include 3D movements. This article is a part of a bigger project which hopes to get a better understanding of how older adults adjust to large passive torques acting on the arm during 3D movements and how older adults with RCTs compensate for the decreased strength, the decreased range of motion (ROM), and the pain that accompany these types of tears. Hopefully the results of this experiment lead to more research toward better understanding how to treat patients with RCTs.
ContributorsGarnica, Nicholas (Co-author) / Perrine, Austin (Co-author) / Schalk, Courtney (Co-author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
135024-Thumbnail Image.png
Description
Research on joint control during arm movements in adults has led to the development of the Leading Joint Hypothesis (LJH), which states that the central nervous system takes advantage of interaction torque (IT) and muscle torque (MT) to produce movements with maximum efficiency in the multi-jointed limbs of the human

Research on joint control during arm movements in adults has led to the development of the Leading Joint Hypothesis (LJH), which states that the central nervous system takes advantage of interaction torque (IT) and muscle torque (MT) to produce movements with maximum efficiency in the multi-jointed limbs of the human body. A gap in knowledge exists in determining how this mature pattern of joint control develops in children. Prior research focused on the kinematics of joint control for children below the age of three; however, not much is known about interjoint coordination with respect to MT and IT in school-aged children. In the present study, joint control at the shoulder, elbow, and wrist during drawing of five shapes was investigated. A random sample of nine typically developing children ages 6 to 12 served as subjects. The task was to trace with the index finger a template placed on a horizontal table. The template consisted of a circle, horizontal, vertical, right-diagonal, and left-diagonal line. Analysis of muscle torque contribution (MTC) revealed the individual roles of MT and IT in the shoulder, elbow, and wrist joints. During drawing of the horizontal line, which requires the most difficult joint control pattern in adults because it does not allow the use of IT for joint rotation, joint control was found to change through development. For the youngest children, the function of elbow MT modified to suppress IT, thereby producing large elbow rotation. The oldest children simplified this by using the shoulder as the principal joint of movement production and with decreased assistance from the elbow. For the other four drawing movements, differences in the pattern of joint control used by all of the subjects was unaffected by an increase in age. Overall, the results suggest that in children above 6 years of age, minor changes in joint control occur during drawing of relatively simple movements. The limited effect of age that was observed could be related to the restriction of movements to the horizontal plane. For a future study, three-dimensional movements that provide more freedom in joint control due to redundancy of degrees of freedom could be more informative about developmental changes in joint coordination.
ContributorsKemmou, Nadaa (Co-author) / Way, Victoria (Co-author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / School of Nutrition and Health Promotion (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
184522-Thumbnail Image.png
Description

The primary goal of this study is to assess and develop an understanding of the effects of Assisted Cycling Therapy on manual motor performance in children with Down syndrome. Seven children (Mage 11.6 years old) completed a 30-minute cycle session 2x/week for 8 weeks on the PACT bicycle at a

The primary goal of this study is to assess and develop an understanding of the effects of Assisted Cycling Therapy on manual motor performance in children with Down syndrome. Seven children (Mage 11.6 years old) completed a 30-minute cycle session 2x/week for 8 weeks on the PACT bicycle at a 35% greater rate than their self-selected rate. Pre- and post-testing of grip force with a dynamometer and unimanual and bimanual manual dexterity using the Purdue Pegboard were measured to determine changes in force production and fine motor control, respectively. Results consistently showed improvements in grip force in both hands and bimanual dexterity following PACT. My results are interpreted with respect to cerebral lateralization and neuroplasticity following PACT intervention.

ContributorsGunther, Bryn (Author) / Ringenbach, Shannon (Thesis director) / Ofori, Edward (Committee member) / Rand, Miya (Committee member) / Rafie, Fourozan (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-05
132187-Thumbnail Image.png
Description
Reactive step and treadmill perturbation training have been shown to improve first step measurements and reduce falls. However, the effect of variable training on the efficacy of generalization is poorly understood. The objective of this study was to measure whether the addition of variability in the perturbation training

Reactive step and treadmill perturbation training have been shown to improve first step measurements and reduce falls. However, the effect of variable training on the efficacy of generalization is poorly understood. The objective of this study was to measure whether the addition of variability in the perturbation training protocol can increase the amount of generalization seen in forward perturbations. The study included 28 young, healthy adults between the age of 20-35 years old with no known significant medical history. Fifteen participants underwent constant training in one direction with the same belt acceleration (4 m/s2) and thirteen participants underwent variable training where their foot positioned and belt acceleration (3 m/s2, 4 m/s2, 5 m/s2) were randomized throughout the collections All slips were done in the forward direction requiring a forward reactive step. To assess the effects of variable training an independent sample t-test of the differences in generalization between each group was calculated. Primary outcome variables in both studies were margin of stability (MOS), step length, and step latency. Results from the study indicated that variable training made no significant improvement (p<0.05) in generalization across the variables. The P-values for the difference in generalization of MOS, step length, and step latency were 0.635, 0.225, 0.148 respectively. Despite the lack of significant evidence to support improvement in generalization with variable training, further investigations are warranted to develop training methods capable of reducing falls in at risk populations.
ContributorsArroyo, Randall Adrian (Author) / Peterson, Daniel (Thesis director) / Ofori, Edward (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05