Matching Items (3)
Filtering by

Clear all filters

136888-Thumbnail Image.png
Description
The zinc oxide nanowires being grown are not developing properly and need to be fixed. In order to do this, the furnace equipment and experimental procedure must be tested until the results produced yield acceptable quality zinc oxide nanowires. After experimentation the nanowires were produced to an acceptable quality. With

The zinc oxide nanowires being grown are not developing properly and need to be fixed. In order to do this, the furnace equipment and experimental procedure must be tested until the results produced yield acceptable quality zinc oxide nanowires. After experimentation the nanowires were produced to an acceptable quality. With quality nanowires to experiment with, testing began to examine the effects of different thicknesses of aluminum dopants. Once doped and annealed, the wires were transferred to a substrate with a grid so contact points could be applied. However; the experiment was phased out once this step was half way complete due to the lab shifting to examine co-doping zinc oxide nanowires as explored in part two of this paper. The goal of co-doping zinc oxide film is to create an ideal p
type relationship for power generation, so this project focuses on altering the electrical properties of zinc oxide through doping that will allow more energy to be generated from the solar panels than current zinc oxide solar panels. The zinc oxide film doped with manganese was sputtered onto a silicon substrate. The experiment failed to create a co-doped sample because an x-ray photoelectron spectroscopy reading of the sample proved no nitrogen existed in the zinc oxide doped with manganese film. This experiment leads into this research teams work with co-doping, so instead of viewing this project as a failure it is seen as a learning experience. The research team is examining the results and creating new experiments to run to fix the problem. I currently work with my mentor Dr. Hongbin Yu and Seung Ho Ahn while doing research.
ContributorsBull, David Sean (Author) / Yu, Hongbin (Thesis director) / Ahn, Seung Ho (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132272-Thumbnail Image.png
Description
The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior

The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior materials
system to reinforce Kevlar armor for the Norica Capstone project, this thesis set out to
synthesize, recover, and characterize zinc oxide nanowire colloids.

The materials synthesized were successfully utilized in the wider Capstone effort to
dramatically enhance the protective abilities of Kevlar, while the data obtained on the 14
hydrothermal synthesis attempts and numerous challenges at recovery provided critical
information on the synthesis parameters involved in the reliable, scalable mass production of the
nanomaterial additive. Additionally, recovery was unconventionally facilitated in the absence of
a vacuum filtration apparatus with nanoscale filters by intentionally inducing electrostatic
agglomeration of the nanowires during standard gravity filtration. The subsequent application of
these nanowires constituted a pioneering use in the production of nanowire-reinforced
STF-based Kevlar coatings, and support the future development and, ultimately, the
commercialization of lighter and more-protective soft armor systems.
ContributorsDurso, Michael Nathan (Author) / Tongay, Sefaattin (Thesis director) / Zhuang, Houlong (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05