Matching Items (2)
Filtering by
- All Subjects: Imaging
- All Subjects: ROIC
- Creators: Allee, David

Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high frequencies. In order to accomplish this, the operational amplifiers used in the very low frequency imaging test set up must be replaced with ones that have higher bandwidth. The trade-off of using these amplifiers is that they have a typical higher input leakage current on the order of 100 compared to the standard. Using a modified circuit design technique that reduces input leakage current of the operational amplifiers used in the imaging test setup, a printed circuit board with D-dot sensors is fabricated to identify the frequency limitations of electric field imaging. Data is collected at both low and high frequencies as well as low peak voltage. The data is then analyzed to determine the range in intensity of electric field and frequency that this circuit low-leakage design can accurately detect a signal. Data is also collected using another printed circuit board that uses the standard circuit design technique. The data taken from the different boards is compared to identify if the modified circuit design technique allows for higher sensitivity imaging. In conclusion, this research supports that using low-leakage design techniques can allow for signal detection comparable to that of the standard circuit design. The low-leakage design allowed for sensitivity within a factor two to that of the standard design. Although testing at higher frequencies was limited, signal detection for the low-leakage design was reliable up until 97 kHz, but further experimentation is needed to determine the upper frequency limits.

Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag
ing systems. Performance of ROICs affect the quality of images obtained from IR
imaging systems. Contemporary infrared imaging applications demand ROICs that
can support large dynamic range, high frame rate, high output data rate, at low
cost, size and power. Some of these applications are military surveillance, remote
sensing in space and earth science missions and medical diagnosis. This work focuses
on developing a ROIC unit cell prototype for National Aeronautics and Space Ad
ministration(NASA), Jet Propulsion Laboratory’s(JPL’s) space applications. These
space applications also demand high sensitivity, longer integration times(large well
capacity), wide operating temperature range, wide input current range and immunity
to radiation events such as Single Event Latchup(SEL).
This work proposes a digital ROIC(DROIC) unit cell prototype of 30ux30u size,
to be used mainly with NASA JPL’s High Operating Temperature Barrier Infrared
Detectors(HOT BIRDs). Current state of the art DROICs achieve a dynamic range
of 16 bits using advanced 65-90nm CMOS processes which adds a lot of cost overhead.
The DROIC pixel proposed in this work uses a low cost 180nm CMOS process and
supports a dynamic range of 20 bits operating at a low frame rate of 100 frames per
second(fps), and a dynamic range of 12 bits operating at a high frame rate of 5kfps.
The total electron well capacity of this DROIC pixel is 1.27 billion electrons, enabling
integration times as long as 10ms, to achieve better dynamic range. The DROIC unit
cell uses an in-pixel 12-bit coarse ADC and an external 8-bit DAC based fine ADC.
The proposed DROIC uses layout techniques that make it immune to radiation up to
300krad(Si) of total ionizing dose(TID) and single event latch-up(SEL). It also has a
wide input current range from 10pA to 1uA and supports detectors operating from
Short-wave infrared (SWIR) to longwave infrared (LWIR) regions.