Matching Items (12)
151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
153302-Thumbnail Image.png
Description
Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions

Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions because they could have seeded early Earth with significant amounts of water and pre-biotic, organic material, their record of abiotic, aqueous, and organic geochemistry is of interest as well.

CC materials previously resided on asteroidal parent bodies, relic planetesimals of Solar System formation which never accreted enough material to develop long-lived, large-scale geological processes. These bodies were large enough, however, to experience some degree of heating due to the decay of radiogenic isotopes, and the meteorite record suggests the existence of 100-150 parent bodies which experienced varying degrees of thermal and aqueous alteration for the first several 10 Myr of Solar System history.

The first chapter of this dissertation reviews literature addressing aqueous alteration as an essential participant in parent body geochemistry, organic synthesis, or both (though papers which address both are rare). The second chapter is a published organic analysis of the soluble organic material of Bells, an unclassified type 2 chondrite. Analytical approaches to assess terrestrial contamination of meteorite samples are also reviewed in the first chapter to allow introduction in chapter 3 of kinetic modeling which rules out certain cases of contamination and constrains the timing of thermal and aqueous alteration. This is the first known application of isoleucine epimerization for either of these purposes. Chapter 4 is a kinetic study of D-allo-isoleucine epimerization to establish its behavior in systems with large, relative abundances of alloisoleucine to isoleucine. Previous epimerization studies for paleontological or geological purposes began with L-isoleucine, the only protein amino acid of the four isoleucine stereoisomers.

Kinetic model calculations using isoleucine stereoisomer abundances from 7 CR chondrites constrain the total duration of the amino acids' residence in the aqueous phase. The comparatively short timescales produced by the presented modeling elicit hypotheses for protection or transport of the amino acids within the CR parent body.
ContributorsMonroe, Adam Alexander (Author) / Pizzarello, Sandra (Thesis advisor) / Williams, Peter (Thesis advisor) / Anbar, Ariel D (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2014
150140-Thumbnail Image.png
Description
The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights

The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights into possible variabilities in meteoroid type sampling between Mars and Earth space environments; 3) aid in our understanding of soil, dust, and sedimentary rock chemistry; 4) assist with the calibration of crater-age dating techniques; and 5) provide witness samples for chemical and mechanical weathering processes. The presence of reduced metallic iron in approximately 88 percent of meteorite falls renders the majority of meteorites particularly sensitive to oxidation by H2O interaction. This makes them excellent markers for H2O occurrence. Several large meteorites have been discovered at Gusev Crater and Meridiani Planum by the Mars Exploration Rovers (MERs). Significant morphologic characteristics interpretable as weathering features in the Meridiani suite of iron meteorites include a 1) large pit lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; 2) differentially eroded kamacite and taenite lamellae on three of the meteorites, providing relative timing through cross-cutting relationships with deposition of 3) an iron oxide-rich dark coating; and 4) regmaglypted surfaces testifying to regions of minimal surface modification; with other regions in the same meteorites exhibiting 5) large-scale, cavernous weathering. Iron meteorites found by Mini-TES at both Meridiani Planum and Gusev Crater have prompted laboratory experiments designed to explore elements of reflectivity, dust cover, and potential oxide coatings on their surfaces in the thermal infrared using analog samples. Results show that dust thickness on an iron substrate need be only one tenth as great as that on a silicate rock to obscure its infrared signal. In addition, a database of thermal emission spectra for 46 meteorites was prepared to aid in the on-going detection and interpretation of these valuable rocks on Mars using Mini-TES instruments on both MER spacecraft. Applications to the asteroidal sciences are also relevant and intended for this database.
ContributorsAshley, James Warren (Author) / Christensen, Philip R. (Thesis advisor) / Sharp, Thomas G (Committee member) / Shock, Everett L (Committee member) / Hervig, Richard L (Committee member) / Zolotov, Mikhail Y (Committee member) / Arizona State University (Publisher)
Created2011
156699-Thumbnail Image.png
Description
An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations

An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations ≤ 5 minutes at peak temperature, porphyritic textures can be reproduced at cooling rates ≤ 600 K/hr, rates consistent with planetary embryo bow shocks. Porphyritic textures were found to be commonly associated with skeletal growth, which compares favorably to features in natural chondrules from Queen Alexandra Range 97008 analyzed, which show similar skeletal features. It is concluded that the experimentally reproduced porphyritic textures are consistent with those of natural chondrules. This work shows heating duration is a major determinant of chondrule texture and the work further constrains this parameter by measuring the rate of chemical dissolution of relict grains. The results provide a robust, independent constraint that porphyritic chondrules were heated at their peak temperatures for ≤ 10 minutes. This is also consistent with heating by bow shocks. The planetary embryo bow shock model therefore remains a viable chondrule mechanism for the formation of the vast majority of chondrules, and the results presented here therefore strongly suggest that large planetary embryos were present and on eccentric orbits during the first few million years of the Solar System’s history.
ContributorsPerez, Alexandra Marie (Author) / Desch, Steven J (Thesis advisor) / Till, Christy B. (Committee member) / Schrader, Devin L (Committee member) / Arizona State University (Publisher)
Created2018
Description
Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides

Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides an ideal environment for detecting spectral variations that can be related to differences in surface dust cover or the composition of the underlying bedrock. Several imaging cameras sent to Mars include the capability to selectively filter incoming light to discriminate between surface materials.

At the coarse spatial resolution provided by the wide-angle Mars Color Imager (MARCI) camera aboard the Mars Reconnaissance Orbiter (MRO), regional scale differences in reflectance at all wavelengths are dominated by the presence or absence of Fe3+-rich dust. The dust cover in many regions is highly variable, often with strong seasonal dependence although major storm events can redistribute dust in ways that significantly alter the albedo of large-scale regions outside of the normal annual cycle. Surface dust reservoirs represent an important part of the martian climate system and may play a critical role in the growth of regional dust storms to planet-wide scales. Detailed investigation of seasonal and secular changes permitted by repeated MARCI imaging coverage have allowed the surface dust coverage of the planet at large to be described and have revealed multiannual replenishing of regions historically associated with the growth of storms.

From the ground, rover-based multispectral imaging acquired by the Mastcam cameras allows compositional discrimination between bedrock units and float material encountered along the Curiosity rover’s traverse across crater floor and lower Mt. Sharp units. Mastcam spectra indicate differences in primary mineralogy, the presence of iron-bearing alteration phases, and variations in iron oxidation state, which occur at specific locations along the rover’s traverse. These changes represent differences in the primary depositional environment and the action of later alteration by fluids circulating through fractures in the bedrock. Loose float rocks sample materials brought into the crater by fluvial or other processes. Mastcam observations provide important constraints on the geologic history of the Gale Crater site.
ContributorsWellington, Danika (Author) / Bell Iii, James F (Thesis advisor) / Christensen, Philip R. (Committee member) / Robinson, Mark S (Committee member) / Sharp, Thomas G (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2018
155222-Thumbnail Image.png
Description
The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and isotopic investigations of different classes of meteorites and their components.

The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and isotopic investigations of different classes of meteorites and their components. In this dissertation, I have investigated a variety of isotope systematics in chondritic and achondritic meteorites to understand processes that have shaped our Solar System. Specifically, the investigations conducted here are in two main areas: 1) Hydrogen isotope systematics in a meteorite representing the freshest known sample of the martian crust, and 2) Isotopic studies (specifically relating to high resolution chronology, nucleosynthetic anomalies and mass-dependent fractionations) in calcium-aluminum-rich inclusions, which are thought to be the earliest-formed solids in the Solar System. Chapter 1 of this dissertation presents a review of the hydrogen isotopic compositions of various planetary bodies and reservoirs in the Solar System, which could serve as tracers for the volatile sources. Chapter 2 focuses on an investigation of the hydrogen isotopic systematics in the freshest martian meteorite fall, Tissint, using the Cameca IMS-6f secondary ion mass spectrometer (SIMS). These first two chapters comprise the first part of this dissertation. The second part is comprised of chapters 3 through 6 and is focused on isotopic analyses of Calcium-Aluminum-rich Inclusions (CAIs). Chapter 3 is a review of CAIs, which record some of the earliest processes that occurred in the solar nebula. Chapter 4 presents the results of an investigation of the 26Al-26Mg short-lived chronometer (half-life ~0.72 Ma) in two CAIs and their Wark-Lovering (WL) rims from a CV3 carbonaceous chondrite using the Cameca NanoSIMS 50L. Chapter 5 is focused on the results of a study of the Zr isotope compositions of a suite of 15 CAIs from different carbonaceous chondrites using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), in order to identify nucleosynthetic anomalies in the CAI-forming region. Chapter 6 focuses on the mass-dependent Mg isotopic compositions measured in 11 CAIs from the Allende CV3 carbonaceous chondrite using MC-ICPMS, to evaluate effects of thermal processing on CAIs.
ContributorsMane, Prajkta (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Desch, Steven (Committee member) / Garvie, Laurence (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2016
168386-Thumbnail Image.png
Description
Meteorites provide an opportunity to reconstruct the history of the SolarSystem. Differentiated meteorites, also called achondrites, are the result of melting and differentiation processes on their parent body. Stable isotopic compositions of differentiated meteorites and their components have added to the understanding of physical parameters, such as temperature, pressure, and redox conditions relevant to

Meteorites provide an opportunity to reconstruct the history of the SolarSystem. Differentiated meteorites, also called achondrites, are the result of melting and differentiation processes on their parent body. Stable isotopic compositions of differentiated meteorites and their components have added to the understanding of physical parameters, such as temperature, pressure, and redox conditions relevant to differentiation processes on planetesimals and planets in the early Solar System. In particular, Fe and Si isotopes have proven to be useful in advancing the understanding of physical and chemical processes during planetary accretion and subsequent evolution. In this work, I developed a new method to simultaneously purify Fe and Si from a single aliquot of sample while ensuring consistently high yields and accurate and precise isotopic measurements. I then measured the Fe isotope compositions and Si contents of metals from aubrite meteorites to infer the structure and thermal evolution of their asteroidal parent body. Thereafter, I determined the combined Si and Fe isotope compositions of aubrite metals and the Horse Creek iron meteorite, and compared the magnitude of Si and Fe isotope fractionation factors between metal and silicates for both enstatite chondrites and aubrites to estimate the effect of high-temperature core formation that occurred on the aubrite parent body. I additionally assessed whether correlated Si and Fe isotope systematics can be used to trace core formation and partial melting processes for the aubrite parent body, angrite parent body, Mars, Vesta, Moon, and Earth. Finally, I measured the combined Fe and Si isotope composition of a variety of ungrouped achondrites and brachinites that record different degrees of differentiation under different redox conditions to evaluate the role of differentiation and oxygen fugacity in controlling their Fe and Si isotope compositions. Taken together, this comprehensive dataset reveals the thermal evolution of the aubrite parent body, provides insights into the factors controlling the Fe and Si isotope compositions of various planetary materials, and helps constrain the bulk starting composition of planets and planetesimals.
ContributorsRay, Soumya (Author) / Wadhwa, Meenakshi (Thesis advisor) / Garvie, Laurence (Committee member) / Till, Christy (Committee member) / Hervig, Richard (Committee member) / Schrader, Devin (Committee member) / Arizona State University (Publisher)
Created2021
158560-Thumbnail Image.png
Description
Meteorites and their components can be used to unravel the history of the early Solar System. Carbonaceous chondrites are meteorites that originated from undifferentiated parent bodies that formed within a few million years of the beginning of the Solar System. These meteorites contain calcium-aluminum-rich inclusions (CAIs), which are the oldest

Meteorites and their components can be used to unravel the history of the early Solar System. Carbonaceous chondrites are meteorites that originated from undifferentiated parent bodies that formed within a few million years of the beginning of the Solar System. These meteorites contain calcium-aluminum-rich inclusions (CAIs), which are the oldest dated solids in the Solar System at ~4.567 billion years old and thus preserve a record of the earliest stage of Solar System formation. The isotopic compositions of CAIs and bulk carbonaceous chondrites can be used to identify the sources of material inherited by the protoplanetary disk, assess the degree of mixing in the disk, and evaluate sample origins and potential genetic relationships between parent bodies. In particular, mass-independent Cr and Ti isotopic compositions have proven to be especially useful for these purposes.

In this work, I first developed new methods for the chemical separation of Cr and Ti, improving the reliability of existing methods to ensure consistent yields and accurate isotopic measurements. I then measured the Cr and Ti isotopic compositions of CAIs from CV and CK chondrites to determine the extent of isotopic heterogeneity in the CAI-forming region and assess the role of CAIs in the preservation of planetary-scale isotopic anomalies. My results show that all measured CAIs originated from a common isotopic reservoir that incorporated material from at least three distinct nucleosynthetic sources and preserved limited isotopic heterogeneity. These results also suggest that planetary-scale isotopic anomalies cannot be attributed solely to the transport of CAIs from one part of the solar nebula to another. I finally measured the Cr and Ti isotopic compositions of bulk CM, CO, and ungrouped chondrites to evaluate the relationship between CM and CO chondrites, which have been suggested to originate from either distinct but related parent bodies or a common compositionally heterogeneous parent body. My results suggest that CM, CO, and related ungrouped chondrites originated from distinct parent bodies that formed from similar precursor materials in nearby formation regions. These results may have implications for asteroid samples returned by the OSIRIS-REx and Hayabusa2 missions.
ContributorsTorrano, Zachary (Author) / Wadhwa, Meenakshi (Thesis advisor) / Anbar, Ariel D (Committee member) / Schrader, Devin L (Committee member) / Williams, David A. (Committee member) / Young, Patrick A (Committee member) / Arizona State University (Publisher)
Created2020
158229-Thumbnail Image.png
Description
During the early Solar System many physiochemical processes were taking place that would shape the formation and evolution of rocky bodies. Growth of these rocky objects was rapid, with some growing to sizes of 10s – 1000s km (“planetesimals”) in the first few million years. Because these objects formed early,

During the early Solar System many physiochemical processes were taking place that would shape the formation and evolution of rocky bodies. Growth of these rocky objects was rapid, with some growing to sizes of 10s – 1000s km (“planetesimals”) in the first few million years. Because these objects formed early, they contained sufficient 26Al (an isotope of Al with a short half-life of ~705,000 yrs) to heat the interiors to melting temperatures, resulting in the formation of the first igneous rocks in nascent Solar System. Depending on the size and time of accretion, some bodies experienced high degrees of melting (with some having global magma oceans) while others experienced lower degrees of partial melting, and yet others did not experience any melting at all. These varying degrees of heating and melting processes on early-formed planetesimals produced a variety of achondritic meteorite types. These achondrites have bulk compositions ranging from ultramafic to basaltic, with some rare types having more highly “evolved” (i.e., high-SiO2) compositions. Determining the detailed chronology of their formation with fine time resolution is key for understanding the earliest stages of planet formation, and there are high resolution chronometers that are ideally suited for this application. Three such chronometers (i.e., the 26Al-26Mg, 53Mn-53Cr, and 207Pb-206Pb chronometers) are the focus of this work. Based on investigations of these chronometers in several achondritic meteorites, the implications for the formation and evolution of planetesimals in the early Solar System will be discussed.
ContributorsDunlap, Daniel Robert (Author) / Wadhwa, Meenakshi (Thesis advisor) / Desch, Steve (Committee member) / Hodges, Kip (Committee member) / Sharp, Tom (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Arizona State University (Publisher)
Created2020
132343-Thumbnail Image.png
Description
Shock effects in meteorites provide important insights into impacts on their parent bodies. Eucrites are among the Howardite-Eucrite-Diogenite (HED) class of achondrites that likely originate from the intact, differentiated asteroid Vesta. Brecciated eucrites provide a record of the impact processes that occurred after the crustal formation of the parent body.

Shock effects in meteorites provide important insights into impacts on their parent bodies. Eucrites are among the Howardite-Eucrite-Diogenite (HED) class of achondrites that likely originate from the intact, differentiated asteroid Vesta. Brecciated eucrites provide a record of the impact processes that occurred after the crustal formation of the parent body. Radiometric dating of HEDs has shown that they were affected by resetting events at 3.4 – 4.1 and 4.48 Ga. Therefore, shock effects in HEDs are windows into ancient impacts on asteroids early in solar system history. Northwest Africa (NWA) 8677 is a genomict eucrite with lithologies that are texturally different, but compositionally similar. The clasts in the breccia include strongly shocked (S5) gabbroic fragments and weakly shocked (S3) basaltic clasts. Coesite, a high-pressure polymorph of quartz, is preserved in the core of a large (~250 μm) silica grain, indicating the gabbro was strongly shocked. A large thermal overprint from the surrounding melt resulted in the transformation of coesite to low-pressure silica phases of quartz and cristobalite on the rims of this grain. The shock melt, interstitial to the breccia fragments, exhibits well-developed quench textures and contains a low-pressure mineral assemblage of plagioclase and pyroxene, implying that crystallization occurred after pressure release. The heterogeneity in shock features between the gabbroic and basaltic lithologies suggests that NWA 8677 experienced a variable impact history, which included at least two impact events. An initial impact strongly shocked and brecciated the gabbro and ejected both onto the regolith of the parent body where a more weakly shocked basalt was incorporated. A second impact produced the interstitial melt between the breccia matrix. The temperature of this shock melt remained high after pressure release, resulting in crystallization of a low-pressure assemblage of pyroxene and feldspar, as well as the transformation of quartz + cristobalite rims on coesite
ContributorsMarquardt, Madeline Claire (Co-author) / Sharp, Thomas (Co-author, Thesis director) / Fudge, Crystylynda (Co-author) / Irving, Tony (Co-author) / Barboni, Melanie (Committee member) / Desch, Steve (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05