Matching Items (3)
Filtering by

Clear all filters

136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
132166-Thumbnail Image.png
Description
Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium

Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium glutamicum that can produce flavonoids pinocembrin and naringenin. After culturing Escherichia coli colonies containing genes of interest, the genes were collected and purified by PCR reactions. The recombinant plasmid was assembled using CPEC and successfully transformed into Escherichia coli, with plans to transform Corynebacterium glutamicum to experiment and determine which recombinant can produce more pinocembrin and naringenin. Design work for other DNA recombinants, which were not the focus of this project, was also completed.
ContributorsWong, Adam (Co-author, Co-author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164644-Thumbnail Image.png
Description

Flavonoids are important biomolecules with a variety of pharmaceutical and agricultural applications. Currently, isolating these compounds is done by plant extraction, however this process is hindered by large land and energy requirements. Previous groups have aimed to overcome these challenges by engineering microbes to produce these important compounds, however this

Flavonoids are important biomolecules with a variety of pharmaceutical and agricultural applications. Currently, isolating these compounds is done by plant extraction, however this process is hindered by large land and energy requirements. Previous groups have aimed to overcome these challenges by engineering microbes to produce these important compounds, however this is largely bottlenecked by the lack of intercellular malonyl-CoA availability. To remedy this, the genes matB and matC have been identified as coding for malonyl-CoA synthase and a putative dicarboxylate carrier protein, respectively. Other works have successfully engineered two variants, Streptomyces coelicolor and Rhizobium trifolii, of these genes into Escherichia coli, however this has yet to be accomplished in Gram-positive Corynebacterium glutamicum. Additionally, other groups have neglected to attempt tuning these genes with respect to one another by inserting in front of different inducible promoters. This study has successfully assembled two plasmids containing the Streptomyces coelicolor and Rhizobium trifolii variants of both matB and matC. Preliminary fermentations and GCMS results confirmed that little to none naringenin was produced without the matB-matC module. Additionally, preliminary fermentations revealed that the DelAro1 and DelAro3 strains can be used to reduce metabolism of aromatics like naringenin.

ContributorsRonstadt, Jason (Author) / Varman, Arul (Thesis director) / Nielsen, David (Committee member) / Liu, Fang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05