Matching Items (5)
Filtering by

Clear all filters

153295-Thumbnail Image.png
Description
Cellular heterogeneity is a key factor in various cellular processes as well as in disease development, especially associated with immune response and cancer progression. Cell-to-cell variability is considered to be one of the major obstacles in early detection and successful treatment of cancer. Most present technologies are based on

Cellular heterogeneity is a key factor in various cellular processes as well as in disease development, especially associated with immune response and cancer progression. Cell-to-cell variability is considered to be one of the major obstacles in early detection and successful treatment of cancer. Most present technologies are based on bulk cell analysis, which results in averaging out the results acquired from a group of cells and hence missing important information about individual cells and their behavior. Understanding the cellular behavior at the single-cell level can help in obtaining a complete profile of the cell and to get a more in-depth knowledge of cellular processes. For example, measuring transmembrane fluxes oxygen can provide a direct readout of the cell metabolism.

The goal of this thesis is to design, optimize and implement a device that can measure the oxygen consumption rate (OCR) of live single cells. A microfluidic device has been designed with the ability to rapidly seal and unseal microchambers containing individual cells and an extracellular optical oxygen sensor for measuring the OCR of live single cells. The device consists of two parts, one with the sensor in microwells (top half) and the other with channels and cells trapped in Pachinko-type micro-traps (bottom half). When the two parts of the device are placed together the wells enclose each cell. Oil is flown in through the channels of the device to produce isolated and sealed microchamber around each cell. Different fluids can be flowed in and out of the device, alternating with oil, to rapidly switch between sealed and unsealed microenvironment around each cell. A fluorescent ratiometric dual pH and oxygen sensor is placed in each well. The thesis focuses on measuring changes in the oxygen consumption rate of each cell within a well. Live and dead cells are identified using a fluorescent live/dead cell assay. Finally, the technology is designed to be scalable for high-throughput applications by controlling the flow rate of the system and increasing the cell array density.
ContributorsRodrigues, Meryl (Author) / Meldrum, Deirdre (Thesis advisor) / Kelbauskas, Laimonas (Committee member) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
135528-Thumbnail Image.png
Description
Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy

Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy the needs of a local faculty member who wished to know the water levels available in his office water cooler, potentially saving him the disappointment of discovering an empty container. 


This project utilizes an Arduino microprocessor, an ESP 8266 Wi-Fi module, and a variety of sensors to detect water levels in filtered water unit located on the fourth floor of the the Brickyard Building, BYENG, at Arizona State University. This implementation will not interfere with the system already set in place to store and transfer water. The level of accuracy in water levels is expected to give the ability to discern +/- 1.5 liters of water. This system will send will send information to a created web service from which anyone with internet capabilities can gain access. The interface will display current water levels and attempt to predict at what time the water levels will be depleted. In the short term, this information will be useful for individuals on the floor to discern when they are able to extract water from the system. Overtime, the information this system gathers will map the drinking trends of the floor and can allow for a scheduling of water delivery that is more consistent with the demand of those working on the floor.
ContributorsEnriquez, Alexander (Author) / Meuth, Ryan (Thesis director) / Burger, Kevin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05