Matching Items (4)
Filtering by

Clear all filters

Description

The Arizona Board of Education decides the science curricula for students K-6. The standards lack an in depth knowledge of marine life, marine science, ocean conservation, and more related topics. Through interviews with teachers, faculty, and research on ocean literacy and coral reefs, My Coral Reef Booklet assembles various learning

The Arizona Board of Education decides the science curricula for students K-6. The standards lack an in depth knowledge of marine life, marine science, ocean conservation, and more related topics. Through interviews with teachers, faculty, and research on ocean literacy and coral reefs, My Coral Reef Booklet assembles various learning activities to cater to students from a variety of education, financial and impairment backgrounds. My Coral Reef Booklet addresses coral reef basics and how students can play their part in coral reef conservation despite their location.

ContributorsHynds, Janna (Author) / Hedges, Craig (Thesis director) / Senko, Jesse (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsHynds, Janna (Author) / Hedges, Craig (Thesis director) / Senko, Jesse (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsHynds, Janna (Author) / Hedges, Craig (Thesis director) / Senko, Jesse (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor)
Created2023-05
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05