Matching Items (2)
Filtering by

Clear all filters

158614-Thumbnail Image.png
Description
This work describes an approach for distance computation between agents in a

multi-agent swarm. Unlike other approaches, this work relies solely on signal Angleof-

Arrival (AoA) data and local trajectory data. Each agent in the swarm is able

to discretely determine distance and bearing to every other neighbor agent in the

swarm. From this

This work describes an approach for distance computation between agents in a

multi-agent swarm. Unlike other approaches, this work relies solely on signal Angleof-

Arrival (AoA) data and local trajectory data. Each agent in the swarm is able

to discretely determine distance and bearing to every other neighbor agent in the

swarm. From this information, I propose a lightweight method for sensor coverage

of an unknown area based on the work of Sameera Poduri. I also show that this

technique performs well with limited calibration distances.
ContributorsMulford, Philip (Author) / Das, Jnaneshwar (Thesis advisor) / Takahashi, Timothy (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2020
158901-Thumbnail Image.png
Description
A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control.
ContributorsGoldman, Alex (Author) / Das, Jnaneshwar (Thesis advisor) / Asner, Greg (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020