Matching Items (2)

Filtering by

Clear all filters

158901-Thumbnail Image.png

Design, Development, and Modeling, of a Novel Underwater Vehicle for Autonomous Reef Monitoring

Description

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control.

Contributors

Agent

Created

Date Created
2020

Rock Traits from Machine Learning: Application to Rocky Fault Scarps

Description

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.

Contributors

Agent

Created

Date Created
2020