Matching Items (5)
Filtering by

Clear all filters

Description
Microwave hydrolysis of egg-white lysozyme was optimized using 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy experiments for amino acid analysis (AAA). Time held under microwave hydrolysis was arrayed for 2, 4, 6, 8, 10, and 15 minutes. Correlations from gCOSY 2D NMR experiments combined with 1H assignments in the one-dimensional

Microwave hydrolysis of egg-white lysozyme was optimized using 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy experiments for amino acid analysis (AAA). Time held under microwave hydrolysis was arrayed for 2, 4, 6, 8, 10, and 15 minutes. Correlations from gCOSY 2D NMR experiments combined with 1H assignments in the one-dimensional chemical shift spectra identified 18 of the 20 amino acids found in lysozyme. Comparison with Uniprot database amino acid composition values revealed the optimal microwave hydrolysis time lies between 4 and 6 minutes. Identification of lysozyme was confirmed with the ExPASy online database search tool AACompIdent. The microwave hydrolysis procedure presented is a simple analytical technique allowing quick and reliable sample preparation in less than one hour that requires no separation or derivation of amino acids residues prior to detection.
ContributorsEdwards, Maximillian Ashur (Author) / Yarger, Jeff (Thesis director) / Marzke, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137167-Thumbnail Image.png
Description
The influenza virus is the main cause of thousands of deaths each year in the United States, and far more hospitalizations. Immunization has helped in protecting people from this virus and there are a number of therapeutics which have proven effective in aiding people infected with the virus. However, these

The influenza virus is the main cause of thousands of deaths each year in the United States, and far more hospitalizations. Immunization has helped in protecting people from this virus and there are a number of therapeutics which have proven effective in aiding people infected with the virus. However, these therapeutics are subject to various limitations including increased resistance, limited supply, and significant side effects. A new therapeutic is needed which addresses these problems and protects people from the influenza virus. Synbodies, synthetic antibodies, may provide a means to achieve this goal. Our group has produced a synbody, the 5-5 synbody, which has been shown to bind to and inhibit the influenza virus. The direct pull down and western blot techniques were utilized to investigate how the synbody bound to the influenza virus. Our research showed that the 5-5 synbody bound to the influenza nucleoprotein (NP) with a KD of 102.9 ± 74.48 nM. It also showed that the synbody bound strongly to influenza viral extract from two different strains of the virus, the Puerto Rico (H1N1) and Sydney (H3N2) strains. This research demonstrated that the 5-5 synbody binds with high affinity to NP, which is important because influenza NP is highly conserved between various strains of the virus and plays an important role in the replication of the viral genome. It also demonstrated that this binding is conserved between various strains of the virus, indicating that the 5-5 synbody potentially could bind many different influenza strains. This synbody may have potential as a therapeutic in the future if it is able to demonstrate similar binding in vivo.
ContributorsKombe, Albert E. (Author) / Diehnelt, Chris (Thesis director) / Woodbury, Neal (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
137040-Thumbnail Image.png
Description
Amino acid analysis (AAA) of egg white lysozyme and bovine Achilles tendon collagen was performed using 1H solution-state nuclear magnetic resonance (NMR) spectroscopy. The proteins were hydrolyzed in 6M HCL with and without 0.02% phenol at 110\u00B0C for 24, 48, and 72 hours. For both proteins, 18 of 20 amino

Amino acid analysis (AAA) of egg white lysozyme and bovine Achilles tendon collagen was performed using 1H solution-state nuclear magnetic resonance (NMR) spectroscopy. The proteins were hydrolyzed in 6M HCL with and without 0.02% phenol at 110\u00B0C for 24, 48, and 72 hours. For both proteins, 18 of 20 amino acids were characterized including hydroxyproline and hydroxylysine in collagen, using 1-dimensional (1D) and 2-dimensional (2D) NMR spectroscopy experiments. Errors ranging from <1% to 8% were seen in treatments with and without phenol. Both proteins could be correctly identified within their own species using the online database search AACompIdent. The proposed approach is a simple analytical technique that does not require the use of column separation or amino acid derivatization prior to compositional analysis.
ContributorsBaranowski, Michael Edward (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Herberger Institute for Design and the Arts (Contributor)
Created2014-05
137123-Thumbnail Image.png
Description
Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.
ContributorsOsborn Popp, Thomas Michael (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137139-Thumbnail Image.png
Description
The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.
ContributorsHayden, Joel James (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05