Matching Items (3)
Filtering by

Clear all filters

Description
Leprosy and tuberculosis are age-old diseases that have tormented mankind and left behind a legacy of fear, mutilation, and social stigmatization. Today, leprosy is considered a Neglected Tropical Disease due to its high prevalence in developing countries, while tuberculosis is highly endemic in developing countries and rapidly re-emerging in several

Leprosy and tuberculosis are age-old diseases that have tormented mankind and left behind a legacy of fear, mutilation, and social stigmatization. Today, leprosy is considered a Neglected Tropical Disease due to its high prevalence in developing countries, while tuberculosis is highly endemic in developing countries and rapidly re-emerging in several developed countries. In order to eradicate these diseases effectively, it is necessary to understand how they first originated in humans and whether they are prevalent in nonhuman hosts which can serve as a source of zoonotic transmission. This dissertation uses a phylogenomics approach to elucidate the evolutionary histories of the pathogens that cause leprosy and tuberculosis, Mycobacterium leprae and the M. tuberculosis complex, respectively, through three related studies. In the first study, genomes of M. leprae strains that infect nonhuman primates were sequenced and compared to human M. leprae strains to determine their genetic relationships. This study assesses whether nonhuman primates serve as a reservoir for M. leprae and whether there is potential for transmission of M. leprae between humans and nonhuman primates. In the second study, the genome of M. lepraemurium (which causes leprosy in mice, rats, and cats) was sequenced to clarify its genetic relationship to M. leprae and other mycobacterial species. This study is the first to sequence the M. lepraemurium genome and also describes genes that may be important for virulence in this pathogen. In the third study, an ancient DNA approach was used to recover M. tuberculosis genomes from human skeletal remains from the North American archaeological record. This study informs us about the types of M. tuberculosis strains present in post-contact era North America. Overall, this dissertation informs us about the evolutionary histories of these pathogens and their prevalence in nonhuman hosts, which is not only important in an anthropological context but also has significant implications for disease eradication and wildlife conservation.
ContributorsHonap, Tanvi Prasad (Author) / Stone, Anne C (Thesis advisor) / Rosenberg, Michael S. (Thesis advisor) / Clark-Curtiss, Josephine E (Committee member) / Krause, Johannes (Committee member) / Arizona State University (Publisher)
Created2017
Description
Although the Caribbean has been continuously inhabited for the last 7,000 years, European contact in the last 500 years dramatically reshaped the cultural and genetic makeup of island populations. Several recent studies have explored the genetic diversity of Caribbean Latinos and have characterized Native American variation present within their genomes.

Although the Caribbean has been continuously inhabited for the last 7,000 years, European contact in the last 500 years dramatically reshaped the cultural and genetic makeup of island populations. Several recent studies have explored the genetic diversity of Caribbean Latinos and have characterized Native American variation present within their genomes. However, the difficulty of obtaining ancient DNA from pre-contact populations and the underrepresentation of non-Latino Caribbean islanders in current research have prevented a complete understanding of genetic variation over time and space in the Caribbean basin. This dissertation uses two approaches to characterize the role of migration and admixture in the demographic history of Caribbean islanders. First, autosomal variants were genotyped in a sample of 55 Afro-Caribbeans from five islands in the Lesser Antilles: Grenada, St. Kitts, St. Lucia, Trinidad, and St. Vincent. These data were used to characterize genetic structure, ancestry and signatures of selection in these populations. The results demonstrate a complex pattern of admixture since European contact, including a strong signature of sex-biased mating and inputs from at least five continental populations to the autosomal ancestry of Afro-Caribbean peoples. Second, ancient mitochondrial and nuclear DNA were obtained from 60 skeletal remains, dated between A.D. 500–1300, from three archaeological sites in Puerto Rico: Paso del Indio, Punta Candelero and Tibes. The ancient data were used to reassesses existing models for the peopling of Puerto Rico and the Caribbean and to examine the extent of genetic continuity between ancient and modern populations. Project findings support a largely South American origin for Ceramic Age Caribbean populations and identify some genetic continuity between pre and post contact islanders. The above study was aided by development and testing of extraction methods optimized for recovery of ancient DNA from tropical contexts. Overall, project findings characterize how ancient indigenous groups, European colonial regimes, the African Slave Trade and modern labor movements have shaped the genomic diversity of Caribbean islanders. In addition to its anthropological and historical importance, such knowledge is also essential for informing the identification of medically relevant genetic variation in these populations.
ContributorsNieves Colón, Maria (Author) / Stone, Anne C (Thesis advisor) / Pestle, William J. (Committee member) / Benn-Torres, Jada (Committee member) / Stojanowski, Christopher (Committee member) / Arizona State University (Publisher)
Created2017
Description
Tuberculosis (TB) is a deadly disease that infects millions of people annually. TB has a global distribution and remains a significant cause of mortality, despite decades of eradication campaigns and antibiotic development. TB is caused by genetically similar pathogens in the Mycobacterium tuberculosis complex (MTBC), and human infections are generally

Tuberculosis (TB) is a deadly disease that infects millions of people annually. TB has a global distribution and remains a significant cause of mortality, despite decades of eradication campaigns and antibiotic development. TB is caused by genetically similar pathogens in the Mycobacterium tuberculosis complex (MTBC), and human infections are generally caused by human-associated strains, although humans can contract animal-associated strains. Skeletal evidence of TB on archaeological human skeletal remains and evolutionary dating of MTBC genomes reveal that TB has afflicted humans for approximately 6,000 years. Previous research has shown that MTBC pathogens were introduced into the Americas through a zoonotic transmission from seals and sea lions along the coasts of South America by at least 1000 CE. Characterizing the introduction and enigmatic intercontinental spread of a successful zoonotic transmission over hundreds of years provides valuable insight into the potential of zoonotic MTBC infections. Through the recovery and phylogenomic analysis of the first ancient MTBC genomes (n = 2) from pre-contact North America, I establish that there were multiple contemporaneous MTBC lineages circulating in human populations in the Americas. The high genomic diversity and deep divergence of strains from Mesoamerica suggest that TB was endemic in the region. To reveal the impact of TB within a Mesoamerican city, I examined human skeletons (n = 137) for evidence of disease from sacrificial and natural mortality burial contexts within Tlatelolco, a ceremonial precinct and interregional marketplace at the heart of the Aztec Empire (1300-1521 CE). I found that TB disproportionately affected sacrificial victims, who also exhibited evidence of food insecurity and resource inequality. These results mirror the socioeconomic patterns of TB distribution today. Further, I sampled broadly from sacrificial victims with skeletal evidence of TB not only for biomolecular confirmation of MTBC but also to uncover associations between skeletal TB manifestation and ability to recover ancient MTBC DNA. I identify 10 additional cases of MTBC at Tlatelolco and link ancient MTBC DNA recovery to TB skeletal lesion characteristics and age-at-death of the infected individual. Overall, this body of work combines paleogenomic and paleopathological data to highlight the impact of ancient TB zoonoses.
ContributorsBlevins, Kelly Elaine (Author) / Buikstra, Jane E (Thesis advisor) / Stone, Anne C (Thesis advisor) / Ávila-Arcos, María C (Committee member) / Smith, Michael E (Committee member) / Wilson, Melissa A (Committee member) / Arizona State University (Publisher)
Created2021