Matching Items (5)
Filtering by

Clear all filters

136171-Thumbnail Image.png
Description
The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism

The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism to M. tuberculosis. These proof-of-concept studies established that after transduction of M. smegmatis cells with bacteriophages, MALDI-TOF MS could be used to detect increased amounts of phage proteins. Recording the growth of M. smegmatis over an 8-hour period, starting with very low OD600 measurements, simulated bacterial loads in clinical settings. For the purposes of MALDI-TOF MS, the procedure for the most effective lethal exposure for M. smegmatis was determined to be a 1-hour incubation in a 95°C water bath. Successful precipitation of the lytic mycobacteriophages D29 and Giles was performed using chloroform and methanol and overlaid with 1-2 μL of α-cyano-4-hydoxycinnaminic acid, which allowed for more distinct and repeatable MALDI-TOF MS spectra. Phage D29 was found to produce an m/z peak at 18.477 kDa, which may have indicated a 2+-charged ion of the 34.8 kDa minor tail protein. The Giles proteins that were identified with MALDI-TOF MS have not been directly compared to protein values reported in the scientific literature. However, the MALDI-TOF MS spectra suggested that distinct peaks existed between M. smegmatis mc2155 and mycobacteriophages, indicating that successful infection with lytic phage and replication thereafter may have occurred. The distinct peaks between M. smegmatis and the phage can be used as indicators of the presence of mycobacteria. At this point, the limits of detection of each phage must be elucidated in order for MALDI-TOF MS spectra to be successfully implemented as a mechanism to rapidly detect antibiotic-resistant mycobacteria.
ContributorsBarrett, Rachael Lauren (Author) / Haydel, Shelley (Thesis director) / Sandrin, Todd (Committee member) / Maarsingh, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134912-Thumbnail Image.png
Description
Abstract The BIO 189 Life Sciences Career Paths course is a seminar course that is intended to acclimate incoming freshmen into the School of Life Sciences (SOLS). While there are instructors who organize and present in the class, upper division undergraduate students are primarily responsible for facilitating lectures and discussions

Abstract The BIO 189 Life Sciences Career Paths course is a seminar course that is intended to acclimate incoming freshmen into the School of Life Sciences (SOLS). While there are instructors who organize and present in the class, upper division undergraduate students are primarily responsible for facilitating lectures and discussions and mentoring the freshmen. Prior research has demonstrated that the mentor-mentee relationship is a very important predictor of success and retention within all university first-year programs. While past studies focused on the student mentor-mentee relationships, there is limited research that measures student satisfaction within freshmen seminar courses, especially in areas of science, technology, engineering, and mathematics (STEM). The purpose of this project is to survey students about their perception of the BIO 189 course. The effort of the project is on pre-health students, as they initiate their undergraduate careers and attempt to achieve acceptance into professional school four years later. Analysis of Likert scale surveys distributed to 561 freshmen revealed that students with an emphasis on "medicine" in their majors preferred a BIO 189 course geared to pre-health interests whereas students seeking an emphasis on research (ecology and cell biology/genetics) sought a BIO 189 course focused on internship and employment opportunities. Assessment of the mentor-mentee relationship revealed that students (n = 561) preferred one-on-one meetings with mentors outside of class (44%) compared to those who preferred interaction in class (30%). A sizable 61.68% of students (n = 548) were most concerned with attaining favorable GPAs, highlighting strong emphasis on academic performance. Overall, 61% of respondents (n = 561) expressed satisfaction with SOLS resources and involvement opportunities, which was hypothesized. These results give substantial insight into the efficacy of a first-year success seminar-mentoring program for college freshmen in STEM.
ContributorsMaalouf, Nicholas Elie (Author) / Haydel, Shelley (Thesis director) / Harrell, Carita (Committee member) / Capco, David (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155898-Thumbnail Image.png
Description
Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with and inhibits the Fic toxin. This study sought to determine

Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with and inhibits the Fic toxin. This study sought to determine the functional importance of Mycobacterium tuberculosis Fic and its putative antitoxin protein, Rv3642c. Using M. tuberculosis H37Rv genetic deletion mutants, fic and Rv3642c were demonstrated to promote intracellular survival in human THP-1 macrophage-like cells. Unlike other Fic toxins, of Fic toxin-antitoxin systems, Fic did not inhibit bacterial growth in vitro in the absence of Rv3642c. Notably, Fic demonstrated in vitro AMPylation of a THP-1 cell extract protein as shown by immunodetection. Fic also exhibited auto-AMPylation activity. Interestingly, a mutation of the conserved histidine in the Fic domain motif, a residue previously shown to be critical for AMPylation, had no effect on Fic-mediated ATP hydrolysis or AMPylation activity. Rv3642c was demonstrated to form a complex with Fic when co-expressed in Escherichia coli, indicating a toxin-antitoxin interaction. Screening M. tuberculosis protein fractions and culture filtrate with α-Fic and α-Rv3642c rabbit antisera did not detect monomers of Fic or Rv3642c, thus the cellular localization of Fic and the Rv3642c-Fic complex remains unclear. The results of this study provide insight into the function of M. tuberculosis Fic, and suggest that Fic and Rv3642c are important for M. tuberculosis survival in the intracellular macrophage environment. Furthermore, these findings challenge the current dogma that Fic domain catalysis is dependent on the conserved histidine of the Fic motif.
ContributorsLaMarca, Ryan (Author) / Haydel, Shelley (Thesis advisor) / Lake, Douglas (Committee member) / Nickerson, Cheryl (Committee member) / Arizona State University (Publisher)
Created2017
148229-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers, but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsNumani, Asfia (Co-author) / Mishra, Shambhavi (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The need for new tuberculocidal drugs is crucial with drug resistance on the rise as the tuberculosis epidemic rages on. One new potential drug target is the PrrAB two component system (TCS) since it does not exist in humans and is essential to viability in Mycobacterium tuberculosis. This project examines

The need for new tuberculocidal drugs is crucial with drug resistance on the rise as the tuberculosis epidemic rages on. One new potential drug target is the PrrAB two component system (TCS) since it does not exist in humans and is essential to viability in Mycobacterium tuberculosis. This project examines Mycobacterium smegmatis, and this nonpathogenic and fast-growing organism possesses two full length PrrAB orthologs, in addition to an orphaned PrrB sensor histidine kinase. While it was determined that PrrAB1 and PrrAB2 are nonessential, the lone PrrB3 is not yet characterized for essentiality. To confirm individual dispensability of PrrAB1 and PrrAB2 and investigate the essentiality of PrrB3 and the full M. smegmatis PrrAB multiplex, we utilized CRISPRi dCas9 to repress the expression (knockdown) of prrAB1 (MSMEG_5662-5663), prrAB2 (MSMEG_0244-0246), and the lone prrB3 (MSMEG_2793) in M. smegmatis independently and simultaneously. Repression of prrAB1 resulted in the greatest growth defect, with a lag of 17 cellular division cycles compared to the control, a strain generated with an empty vector. However, the knockdown of prrAB1 was not lethal to M. smegmatis. The inhibition of all three prrAB orthologs simultaneously, also known as a multiplex knockdown, lagged the control by 13 cellular division cycles. At the 48-hour point, both the single ortholog repression of prrAB1 as well as the whole prrAB system knockdown had a growth defect of 13 replication cycles behind the control. However, the multiplex knockdown stabilized growth at 48 hours, revealing a possible compensatory mechanism in M. smegmatis. Conclusively, we show that the PrrAB TCS is globally inessential for viability in M. smegmatis.
ContributorsHeiligenstein, Piper (Author) / Haydel, Shelley (Thesis director) / Shrivastava, Abhishek (Committee member) / Haller, Yannik (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-12