Matching Items (2)
Filtering by

Clear all filters

Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
Today, there is a gap between the effectiveness of learning online and learning in person. Online educational videos such as ones found on Youtube mimic more of a lecture style of learning, which is easy ignore without a teacher nearby to engage the viewer. Furthermore, there is a lack of

Today, there is a gap between the effectiveness of learning online and learning in person. Online educational videos such as ones found on Youtube mimic more of a lecture style of learning, which is easy ignore without a teacher nearby to engage the viewer. Furthermore, there is a lack of educational videos on the topic of Euclid’s Elements geometry proofs. This project remedies both accounts by offering a new approach on interactive online learning videos and exercises for the topic of Euclid’s Elements Book One, Propositions One and Two. This is accomplished by combining interactive videos, exercises, questions, and sketchpads into one online worksheet. The interactive videos are made using traditional methods of audio and visual elements, with an emphasis on having more dynamic visuals to engage with the viewer. The exercises are made using a program called Geogebra, and consist in having a question to solve, and diagram the use can manipulate to help solve the question. The questions consist in ensuring the viewer understands the material, as well as potential questions to gauge general understanding before and after using the worksheet. The sketchpads consist in stating the proposition being proved, and giving the user all the tools they need to construct or prove the Euclidean proposition in the online interactive environment offered by Geogebra. All of these components are then ordered into the worksheet to make an interactive online learning experience for the viewer. This way the viewer may both watch and actively use the material being presented to promote learning through engagement in a teacher-less environment.
ContributorsFischer, Quinn (Co-author, Co-author) / Roh, Kyeong Hah (Thesis director) / Zandieh, Michelle (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12