Matching Items (6)
Filtering by

Clear all filters

137091-Thumbnail Image.png
Description
Access to clean water is an issue that abounds in many areas across the world. It is estimated that over 770 million people lack access to improved sources of water. However, the lack of access to clean water does not just affect people's health; it is a problem that affects

Access to clean water is an issue that abounds in many areas across the world. It is estimated that over 770 million people lack access to improved sources of water. However, the lack of access to clean water does not just affect people's health; it is a problem that affects three major areas. Because people do not have clean drinking water, millions of school days are missed per year due to water-related disease or children being forced to procure clean water. Also, gender inequalities result from women bearing the majority of the responsibility of walking long distances to find a source of potable water. Therefore, lack of access to clean water affects people's health, their education, and gender equality. The problem is not that there is a lack of technologies to provide clean water; the problem is that these technologies are not being implemented sustainably in the areas that need them most. To bring better access of clean water to people in developing nations, 33 Buckets has designed a distribution platform that uses schools as the central point for water distribution to local communities. A sustainable filtration system will be installed at the school to provide clean water for the people at the school. People in the nearby community will also be able to get free water if they bring their own containers to the school. To maintain the filter and provide it with any repairs that are necessary, water will be sold to nearby businesses lower than the current market prices. These profits will be used to ensure the quality of the filtration system and also to provide educational improvements to the school. An advisory committee made up of men and women will be assembled to run the filtration business and handle the finances. A pilot project to implement this model has been identified as the Rahima Hoque Girls School in rural Bangladesh. The team will travel to Bangladesh in Summer 2014 to install a filter at the school, purchase water testing supplies and containers, and meet with the advisory committee to go over final logistical details. Financial projections show that if the filter operates at 50% of its expected frequency and water is sold 5 days a week for 52 weeks, the school will generate $33,532.31. These profits are more than enough to maintain the system and pay for educational improvements to the school. Once implementation of the site is completed, the project will be monitored to track how the water selling business is operating. If the model is shown to be successful, it can then be scaled to other nearby schools or other countries with water contamination problems.
ContributorsWiegand, Connor James (Author) / Henderson, Mark (Thesis director) / Shrake, Scott (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135469-Thumbnail Image.png
Description
The purpose of this creative project was to establish the foundation of an educational program that teaches financial literacy to the local homeless population. The name of this program is stillHUMAN. The project consisted of two parts, a needs analysis and a prototyping phase. The needs analysis was conducted at

The purpose of this creative project was to establish the foundation of an educational program that teaches financial literacy to the local homeless population. The name of this program is stillHUMAN. The project consisted of two parts, a needs analysis and a prototyping phase. The needs analysis was conducted at the Phoenix Rescue Mission Center, a faith-based homeless shelter that caters to male "clients", through written surveys and one-on-one interviews. Before interviewing the clients, the team acquired IRB approval as well as consent from the Center to carry out this study. These needs were then organized into a House of Quality. We concluded from Part 1 that we would need to create 3 - 7-minute-long video modules that would be available on an online platform and covered topics including professional development, budgeting, credit, and Internet literacy. In order to commence Part 2, each team member recorded a video module. These three videos collectively conveyed instruction regarding how to write a resume, use the Internet and fill out an application online, and how to budget money. These videos were uploaded to YouTube and shown to clients at Phoenix Rescue Mission, who were each asked to fill out a feedback survey afterwards. The team plans to use these responses to improve the quality of future video modules and ultimately create a holistic lesson plan that covers all financial literacy topics the clients desire. A website was also made to store future videos. The team plans to continue with this project post-graduation. Future tasks include creating and testing the a complete lesson plan, establishing a student organization at Arizona State University and recruiting volunteers from different disciplines, and creating an on-site tutoring program so clients may receive individualized attention. Once the lesson plan is demonstrated to be effective at Phoenix Rescue Mission, we plan to administer this lesson plan at other local homeless shelters and assess its efficacy in a non-faithbased and non-male environment. After a successful financial literacy program has been created, we aim to create lesson plans for other topics, including health literacy, human rights, and basic education. Ultimately stillHUMAN will become a sustainable program that unites the efforts of students and professionals to improve the quality of life of the homeless population.
ContributorsKim, Michael (Co-author) / Gulati, Guneet (Co-author) / Vanood, Aimen (Co-author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Department of Physics (Contributor) / Department of Psychology (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The majority of the public is not aware that common objects in their backyard can be mosquito breeding sites, thus leading to an increase in mosquitoes and mosquito-borne diseases affecting humans and animals during the peak seasons. An engaging app that instructs people of all ages how to identify, prevent,

The majority of the public is not aware that common objects in their backyard can be mosquito breeding sites, thus leading to an increase in mosquitoes and mosquito-borne diseases affecting humans and animals during the peak seasons. An engaging app that instructs people of all ages how to identify, prevent, and eliminate breeding sites may be of use in increasing positive behavioral changes in people, and therefore reducing available breeding sites for mosquitoes. The Embodied Games Lab in Psychology at Arizona State University created an educational game phone app using machine learning to teach students how to identify and eliminate mosquito breeding sites. Skeeter Breeder is an interactive, educational game that teaches participants about potential mosquito breeding sites and how to eliminate them from the immediate environment as documented by smartphone imagery. Currently, there is no educational game phone app that uses machine learning to teach this topic. This Thesis describes a pilot study focused on educating about common mosquito breeding sites and increasing the knowledge of 5th graders on the topic through an agentic (by taking their own pictures), engaging (game-like platform with rewards), and interactive (receiving immediate feedback on pictures) game developed from scratch at ASU.

ContributorsBharti, Aarushi (Author) / Johnson-Glenberg, Mina (Thesis director) / Huijben, Silvie (Committee member) / Barrett, The Honors College (Contributor) / Tech Entrepreneurship & Mgmt (Contributor) / Computing and Informatics Program (Contributor)
Created2023-05
166068-Thumbnail Image.png
Description
The lack of infrastructure to provide clean drinking water and sanitation has led to the immense influx and use of plastic sachets, plastic water bottles, and the overall continued rise of plastic usage. Plastic pollution is rising at unprecedented rates. Current estimations show that there will be more plastic in

The lack of infrastructure to provide clean drinking water and sanitation has led to the immense influx and use of plastic sachets, plastic water bottles, and the overall continued rise of plastic usage. Plastic pollution is rising at unprecedented rates. Current estimations show that there will be more plastic in the ocean than fish before 2050. BYOH2O was developed in efforts to ensure clean water access for individuals while minimizing waste creation and more specifically, reducing plastic. BYOH2O (Bring Your Own H2O) is a revolutionary device that provides clean water for outdoor recreational trips such as backpacking, hiking, hunting, and cycling. The BYOH2O company was created in August 2021. BYOH2O is a device that significantly reduces the amount of plastic that is typically found in portable water devices by allowing the easy filtration of water without the need for electricity.
ContributorsWaxman, Aviel (Author) / Butler, Jacob (Co-author) / Langlais, Grayson (Co-author) / Vullo, Delaney (Co-author) / Byrne, Jared (Thesis director) / Larsen, Wiley (Committee member) / Lawson, Brennan (Committee member) / Barrett, The Honors College (Contributor) / School of Social Work (Contributor)
Created2022-05
165656-Thumbnail Image.png
Description
Arsenic contamination in groundwater is a serious problem both in local Arizonan communities and abroad: prolonged exposure to arsenic contamination can cause cancer, vascular damage, and liver failure. This project aims to engineer the microalgae Chlamydomonas reinhardtii to sequester arsenic out of water. Metallothionein, arsenate reductase, and ferritin were integrated

Arsenic contamination in groundwater is a serious problem both in local Arizonan communities and abroad: prolonged exposure to arsenic contamination can cause cancer, vascular damage, and liver failure. This project aims to engineer the microalgae Chlamydomonas reinhardtii to sequester arsenic out of water. Metallothionein, arsenate reductase, and ferritin were integrated into the microalgae via the pASapI plasmid. The plasmid rescues function of the photosystem II gene, leveraging the ability to photosynthesize as a selective trait. Metallothionein and ferritin bind the two most common forms of arsenic: arsenite and arsenate, respectively. Arsenate reductase catalyzes the reduction of arsenate to arsenite, allowing for the ultimate sequestration of the toxic metal to occur in the chloroplast. The algae was transformed using a biolistic device, to create three mutant strains, expressing Metallothionein (MT), Arsenate Reductase (ArsC)-HA, and MT-6xHIS plasmids respectively. When testing the fluorescence output of these three strains, they showed a maximum quantum yield of photosystem II comparable to that of the wildtype algae, indicating that the rescue gene had been incorporated into the chloroplast genome properly. Strains were exposed to arsenic-containing media at 50ppb and 500 ppb for 48 and 72 hours to determine the arsenic sequestration rate. Arsenic concentration in the supernatant was measured using ICP-MS analysis and sequestration rate was calculated in terms of arsenic concentration per fold growth of algae. The normalized arsenic sequestration rates of tagged protein expressing strains at 50 ppb were significantly higher than wildtype.
ContributorsLieberman, Emma (Author) / Bartelle, Benjamin (Thesis director) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05