Matching Items (23)

Place Your Bets

Description

Sports gambling is an illegal multi-hundred-billion-dollar industry in the United States today. Due to the Professional and Amateur Sports Protection Act (PASPA), 46 states are denied the opportunity to offer

Sports gambling is an illegal multi-hundred-billion-dollar industry in the United States today. Due to the Professional and Amateur Sports Protection Act (PASPA), 46 states are denied the opportunity to offer state-sponsored sports gambling (Delaware, Montana, Nevada, and Oregon are exempt). The problem with this law is that sports gambling is still occurring over the internet and through bookies. The government's attempt to control the choices of the American people isn't stopping them from gambling on sports, rather it is pushing them to underground channels where regulation has no foothold. The American government is failing to take advantage of tax revenue that can be used to monitor the sports gambling world along with the sports themselves. This issue of control has had its place in American history and the government finds itself on the wrong side of it once again. This thesis explores the misconceptions in the government's perceived idea of "control" and proposes that PASPA be repealed because of the enormous tax revenue opportunity eliminated by outlawing sports gambling.

Contributors

Agent

Created

Date Created
  • 2016-05

135471-Thumbnail Image.png

A Ground Control System for Studying Locomotion on Granular Media

Description

Current robotic systems are limited in their abilities to efficiently traverse granular environments due to an underdeveloped understanding of the physics governing the interactions between solids and deformable substrates. As

Current robotic systems are limited in their abilities to efficiently traverse granular environments due to an underdeveloped understanding of the physics governing the interactions between solids and deformable substrates. As there are many animal species biologically designed for navigation of specific terrains, it is useful to study their mechanical ground interactions, and the kinematics of their movement. To achieve this, an automated, fluidized bed was designed to simulate various terrains under different conditions for animal testing. This document examines the design process of this test setup, with a focus on the controls. Control programs will be tested with hardware to ensure full functionality of the design. Knowledge gained from these studies can be used to optimize morphologies and gait parameters of robots. Ultimately, a robot can be developed that is capable of adapting itself for efficient locomotion on any terrain. These systems will be invaluable for applications such as planet exploration and rescue operations.

Contributors

Agent

Created

Date Created
  • 2016-05

134393-Thumbnail Image.png

Implementation of Variable Damping to Gait Rehabilitation Technology

Description

Walking ability is a complex process that is essential to humans, critical for performing a range of everyday tasks and enables a healthy, independent lifestyle. Human gait has evolved to

Walking ability is a complex process that is essential to humans, critical for performing a range of everyday tasks and enables a healthy, independent lifestyle. Human gait has evolved to be robust, adapting to a wide range of external stimuli, including variable walking surface compliance. Unfortunately, many people suffer from impaired gait as a result of conditions such as stroke. For these individuals, recovering their gait is a priority and a challenge. The ASU Variable Stiffness Treadmill (VST) is a device that is able to the change its surface compliance through its unique variable stiffness mechanism. By doing this, the VST can be used to investigate gait and has potential as a rehabilitation tool. The objective of this research is to design a variable damping mechanism for the VST, which addresses the need to control effective surface damping, the only form of mechanical impedance that the VST does not currently control. Thus, this project will contribute toward the development of the Variable Impedance Treadmill (VIT), which will encompass a wider range of variable surface compliance and enable all forms of impedance to be con- trolled for the first time. To achieve this, the final design of the mechanism will employ eddy current damping using several permanent magnets mounted to the treadmill and a large copper plate stationed on the ground. Variable damping is obtained by using lead screw mechanisms to remove magnets from acting on the copper plate, which effectively eliminates their effect on damping and changes the overall treadmill surface damping. Results from experimentation validate the mechanism's ability to provide variable damping to the VST. A model for effective surface damping is generated based on open-loop characterization experiments and is generalized for future experimental setups. Overall, this project progresses to the development of the VIT and has potential applications in walking surface simulation, gait investigation, and robot-assisted rehabilitation technology.

Contributors

Agent

Created

Date Created
  • 2017-05

132094-Thumbnail Image.png

Modeling, Analysis, Control and Design of Highly Maneuverable Quadcopters

Description

With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a

With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

The work presents the nonlinear equations of motion of a quadcopter. This includes the translational and rotational equations of motion, as well as an analysis of the nonlinear actuator dynamics. The work then analyzes the static properties of a quadcopter in forward flight equilibrium and shows how static properties change as physical properties of the vehicle are varied. Next, the dynamics of forward flight are linearized, and a dynamic analysis is provided.

After dynamic analysis, the work shows detailed hierarchical control system design trade studies, which includes attitude and translational inner-outer loop control. Among other designs, the following are presented: PD control, proportional control, pole-placement control. Each of these control architectures are employed for the inner loops and outer loops. The work also analyzes linear versus nonlinear simulation performance of a quadcopter, specifically for a step x-axis reference command. It is found that the nonlinear dynamics of the actuator cause significant discrepancy between linear and nonlinear simulation.

Finally, this thesis establishes directions for future graduate research. This includes hardware design, as well as moving toward design of a highly-maneuverable thrust-vectoring quadrotor which will be the focus of the proposed graduate PhD research. In summary, this thesis provides the beginning of a cohesive framework to model, analyze, control, and design quadcopters. It also lays the groundwork for graduate research and beyond.

Contributors

Agent

Created

Date Created
  • 2019-12

137066-Thumbnail Image.png

Psychological Model of No Control/Influence

Description

The Information Measurement Theory (IMT) is a revolutionary thinking paradigm. Its principles allow an individual to accurately perceive reality and simplify the complexities of life. To understand IMT, individuals start

The Information Measurement Theory (IMT) is a revolutionary thinking paradigm. Its principles allow an individual to accurately perceive reality and simplify the complexities of life. To understand IMT, individuals start by first recognizing that everything must follow natural law and cause and effect, that there is no randomness, and that everyone changes at a certain rate. They then move on to understanding that individuals are described by certain characteristics that can be used to predict their future behavior. And finally, they discover that they must learn to understand, accept, and improve themselves while understanding and accepting others. The author, who has spent a considerable amount of time studying and utilizing IMT, believes that IMT can be used within the field of psychology. The extraordinary results that IMT has produced in the construction industry can potentially be produced in a similar fashion within the psychology field. One of the most important principles of IMT teaches that control or influence over others does not exist. This principle alone differentiates IMT from the traditional model of psychology, which is dedicated to changing an individual (through influence). Five case studies will be presented in which individuals have used the principles of IMT to overcome severe issues such as substance abuse and depression. Each case study is unique and exhibits a remarkable change within each individual.

Contributors

Agent

Created

Date Created
  • 2014-05

137705-Thumbnail Image.png

Modeling of Autonomous Quadcopter Flight

Description

The purpose of this honors thesis was to create a quadcopter equation of motion software model in order to develop a control system to make the quadcopter autonomous. This control

The purpose of this honors thesis was to create a quadcopter equation of motion software model in order to develop a control system to make the quadcopter autonomous. This control system was developed using Matlab and Simulink, and the aspects of the quadcopter's flight that were chosen to be controlled were the roll angle, pitch angle, and height of the quadcopter. Upon the completion of this control system model, the actual quadcopter was to be constructed, flown, and used to collect experimental data for comparison to the model. However, the hardware was never made available due to back order problems, and so unfortunately no experimental data from actual test flights was able to be gathered and compared to the Simulink control system model. None the less, the final Simulink model is still accurate because the actual geometry of the chosen quadcopter was used during simulation (including the moments of inertia and moment arm lengths). To begin, background research into quadcopter design is presented to give insight into the progress that has been made in the design of this type of aircraft. The equations of motion for the quadcopter considered in the control system are then derived through the use of twelve state variables. The Simulink model for the open loop system was then constructed in a fashion that converts the change in rotor thrust to the associated orientation angles of the quadcopter. Linear approximations were then used to distinguish the open loop transfer functions for each controlled variable (roll angle, pitch angle, and height), and compensators were designed for the control system in order to produce a natural frequency and damping that allowed for a 5% settling time of approximately two seconds.

Contributors

Agent

Created

Date Created
  • 2013-05

158757-Thumbnail Image.png

Bioinspired Interactions with Complex Granular and Aquatic Environments

Description

August Krogh, a 20th century Nobel Prize winner in Physiology and Medicine, once stated, "for such a large number of problems there will be some animal of choice, or a

August Krogh, a 20th century Nobel Prize winner in Physiology and Medicine, once stated, "for such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." What developed to be known as the Krogh Principle, has become the cornerstone of bioinspired robotics. This is the realization that solutions to various multifaceted engineering problems lie in nature. With the integration of biology, physics and engineering, the classical approach in solving engineering problems has transformed. Through such an integration, the presented research will address the following engineering solution: maneuverability on and through complex granular and aquatic environments. The basilisk lizard and the octopus are the key sources of inspiration for the anticipated solution. The basilisk lizard is a highly agile reptile with the ability to easily traverse on vast, alternating, unstructured, and complex terrains (i.e. sand, mud, water). This makes them a great medium for pursuing potential solutions for robotic locomotion on such terrains. The octopus, with a nearly soft, yet muscular hydrostat body and arms, is proficient in locomotion and its complex motor functions are vast. Their versatility, "infinite" degrees of freedom, and dexterity have made them an ideal candidate for inspiration in the fields such as soft robotics. Through conducting animal experiments on the basilisk lizard and octopus, insight can be obtained on the question: how does the animal interact with complex granular and aquatic environments so effectively? Following it through by conducting systematic robotic experiments, the capabilities and limitations of the animal can be understood. Integrating the hierarchical concepts observed and learnt through animal and robotic experiments, it can be used towards designing, modeling, and developing robotic systems that will assist humanity and society on a diversified set of applications: home service, health care, public safety, transportation, logistics, structural examinations, aquatic and extraterrestrial exploration, search-and-rescue, environmental monitoring, forestry, and agriculture, just to name a few. By learning and being inspired by nature, there exist the potential to go beyond nature for the greater good of society and humanity.

Contributors

Agent

Created

Date Created
  • 2020

152797-Thumbnail Image.png

Automated monitoring and control systems for an algae photobioreactor

Description

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research and development practices have led to new knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. The challenge is to make the price of biofuels from algae cost-competitive with the price of petroleum-based fuels. The scope of this research was to design a concept for an automated system to control specific externalities and determine if integrating the system in an algae cultivation system could improve the algae biomass production process. This research required the installation and evaluation of an algae cultivation process, components selection and computer software programming for an automated system. The results from the automated system based on continuous real time monitored variables validated that the developed system contributes insights otherwise not detected from a manual measurement approach. The implications of this research may lead to technology that can be used as a base model to further improve algae cultivation systems.

Contributors

Agent

Created

Date Created
  • 2014

Balancing Control and Model Validation of Self-Stabilizing Motorcycle

Description

Bicycles and motorcycles offer maneuverability, energy efficiency and acceleration that four wheeled vehicles cannot offer given similar budget for. Two wheeled vehicles have drastically different dynamics from four wheeled vehicles

Bicycles and motorcycles offer maneuverability, energy efficiency and acceleration that four wheeled vehicles cannot offer given similar budget for. Two wheeled vehicles have drastically different dynamics from four wheeled vehicles due to their instability and gyroscopic effect from their wheels.

This thesis focuses on self-stabilization of a motorcycle using an active control momentum gyroscope (CMG) and validation of this multi-degree-of-freedom system’s mathematical model. Physical platform was created to mimic the simulation as accurately as possible and all components used were justified. This process involves derivation of a 3 Degree-of-Freedom (DOF) system’s forward kinematics and its Jacobian matrix, simulation analysis of different controller algorithms, setting the system and subsystem specifications, and real system experimentation and data analysis.

A Jacobian matrix was used to calculate accurately decomposed resultant angular velocities which are used to create the dynamics model of the system torque using the Euler-Lagrange method. This produces a nonlinear second order differential equation that is modeled using MATLAB/Simulink. PID, and cascaded feedback loop are tested in this Simulink model. Cascaded feedback loop shows most promises in the simulation analysis. Therefore, system specifications are calculated according to the data produced by this controller method. The model validation is executed using the Vicon motion capture system which captured the roll angle of the motorcycle. This work contributes to creating a set of procedures for creating a validated dynamic model for a CMG stabilized motorcycle which can be used to create variants of other self-stabilizing motorcycle system.

Contributors

Agent

Created

Date Created
  • 2020

151874-Thumbnail Image.png

Wind farm characterization and control using coherent Doppler lidar

Description

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.

Contributors

Agent

Created

Date Created
  • 2013