Matching Items (2)
Filtering by

Clear all filters

133976-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.
ContributorsBoepple, Brandon Richard (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134918-Thumbnail Image.png
Description
Statistical process control (SPC) is an important quality application that is used throughout industry and is composed of control charts. Most often, it is applied in the final stages of product manufacturing. However it would be beneficial to apply SPC throughout all stages of the manufacturing process such as the

Statistical process control (SPC) is an important quality application that is used throughout industry and is composed of control charts. Most often, it is applied in the final stages of product manufacturing. However it would be beneficial to apply SPC throughout all stages of the manufacturing process such as the beginning stages. This report explores the fundamentals of SPC, applicable programs, important aspects of implementation, and specific examples of where SPC was beneficial. Important programs for SPC are general statistical software such as JMP and Minitab, and some programs are made specifically for SPC such as SPACE: statistical process and control environment. Advanced programs like SPACE are beneficial because they can easily assist with creating control charts and setting up rules, alarms and notifications, and reaction mechanisms. After the charts are set up it is important to apply rules to the charts to see when a system is running off target which indicates the need to troubleshoot and investigate. This makes the notification part an integral aspect as well because attention and awareness must be brought to out of control situations. The next important aspect is ensuring there is a reaction mechanism or plan on what to do in the event of an out of control situation and what to do to get the system running back on target. Setting up an SPC system takes time and practice and requires a lot of collaboration with experts who know more about the system or the quality side. Some of the more difficult parts of implementation is getting everyone on board and creating trainings and getting the appropriate personnel trained.
ContributorsSennavongsa, Christy (Author) / Raupp, Gregory (Thesis director) / Dai, Lenore (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12