Matching Items (20)
Filtering by

Clear all filters

135433-Thumbnail Image.png
Description
For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor

For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor manufacturing company, with a focus on IoT technology, could penetrate the market using their products. The methodology used for our research was to conduct industry interviews to formulate common trends in the utility and industrial hardware manufacturer industries. From there, we composed various strategies that The Company should explore. These strategies were backed up using qualitative reasoning and forecasted discounted cash flow and net present value analysis. We confirmed that The Company should use specific silicon microprocessors and microcontrollers that pertained to each of the four devices analytics demand. Along with a silicon strategy, our group believes that there is a strong argument for a data analytics software package by forming strategic partnerships in this space.
ContributorsLlazani, Loris (Co-author) / Ruland, Matthew (Co-author) / Medl, Jordan (Co-author) / Crowe, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Economics (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135450-Thumbnail Image.png
Description
As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is

As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is microcontrollers (MCUs). As Company X currently holds its focus in manufacturing microprocessors (MPUs), the current manufacturing strategy is not optimal for entering competitively into the MCU space. Within the MCU space, the companies that are competing the best do not utilize such high level manufacturing processes because these low cost products do not demand them. Given that the MCU market is largely untested by Company X and its products would need to be manufactured at increasingly lower costs, it runs the risk of over producing and holding obsolete inventory that is either scrapped or sold at or below cost. In order to eliminate that risk, we will explore alternative manufacturing strategies for Company X's MCU products specifically, which will allow for a more optimal cost structure and ultimately a more profitable Internet of Things Group (IoTG). The IoT MCU ecosystem does not require the high powered technology Company X is currently manufacturing and therefore, Company X loses large margins due to its unnecessary leading technology. Since cash is king, pursuing a fully external model for MCU design and manufacturing processes will generate the highest NPV for Company X. It also will increase Company X's market share, which is extremely important given that every tech company in the world is trying to get its hands into the IoT market. It is possible that in ten to thirty years down the road, Company X can manufacture enough units to keep its products in-house, but this is not feasible in the foreseeable future. For now, Company X should focus on the cost market of MCUs by driving its prices down while maintaining low costs due to the variables of COGS and R&D given in our fully external strategy.
ContributorsKadi, Bengimen (Co-author) / Peterson, Tyler (Co-author) / Langmack, Haley (Co-author) / Quintana, Vince (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136506-Thumbnail Image.png
Description
The purpose of this thesis was to design a market entrance strategy for Company X to enter the microcontroller (MCU) market within the Internet of Things (IoT). The five IoT segments are automotive; medical; retail; industrial; and military, aerospace, and government. To reach a final decision, we will research the

The purpose of this thesis was to design a market entrance strategy for Company X to enter the microcontroller (MCU) market within the Internet of Things (IoT). The five IoT segments are automotive; medical; retail; industrial; and military, aerospace, and government. To reach a final decision, we will research the markets, analyze make versus buy scenarios, and deliver a financial analysis on the chosen strategy. Based on the potential financial benefits and compatibility with Company X's current business model, we recommend that Company X enter the automotive segment through mergers & acquisitions (M&A). After analyzing the supply chain structure of the automotive IoT, we advise Company X to acquire Freescale Semiconductor for $46.98 per share.
ContributorsBradley, Rachel (Co-author) / Fankhauser, Elisa (Co-author) / McCoach, Robert (Co-author) / Zheng, Weilin (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of International Letters and Cultures (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05
134762-Thumbnail Image.png
Description
IoT Media broadcast devices, such as the Roku stick, Amazon Fire, and Chromecast have been emerging onto the market recently as a portable and inexpensive alternative to cable and disk players, allowing easy integration between home and business Wi-Fi networks and television systems capable of supporting HDMI inputs without the

IoT Media broadcast devices, such as the Roku stick, Amazon Fire, and Chromecast have been emerging onto the market recently as a portable and inexpensive alternative to cable and disk players, allowing easy integration between home and business Wi-Fi networks and television systems capable of supporting HDMI inputs without the additional overhead of setting up a heavy or complicated player or computer. The rapid expansion of these products as a mechanism to provide for TV Everywhere services for entertainment as well as cheap office appliances brings yet another node in the rapidly expanding network of IoT that surrounds us today. However, the security implications of these devices are nearly unexplored, despite their prevalence. In this thesis, I will go over the structure and mechanisms of Chromecast, and explore some of the potential exploits and consequences of the device. The thesis contains an overview of the inner workings of Chromecast, goes over the segregation and limited control and fundamental design choices of the Android based OS. It then identifies the objectives of security, four different potential methods of exploit to compromise those objectives on a Chromecast and/or its attached network, including rogue applications, traffic sniffing, evil access points and the most effective one: deauthentication attack. Tests or relevant analysis were carried out for each of these methods, and conclusions were drawn on their effectiveness. There is then a conclusion revolving around the consequences, mitigation and the future implications of security issues on Chromecast and the larger IoT landscape.
ContributorsHuang, Kaiyi (Author) / Zhao, Ziming (Thesis director) / Ahn, Gail-Joon (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134536-Thumbnail Image.png
Description
The basis of this project was to analyze the potential cost savings derived from the implementation of an ultrasonic flaw detector for gas pipes in factories. The group began by researching the market of the Industrial Internet of Things. IIoT is a very attractive market for investment, as connected technologies

The basis of this project was to analyze the potential cost savings derived from the implementation of an ultrasonic flaw detector for gas pipes in factories. The group began by researching the market of the Industrial Internet of Things. IIoT is a very attractive market for investment, as connected technologies are become both more advanced and more affordable. Factory automation also saves costs of human capital, maintenance, and bad product cost as well as safety. After doing this preliminary research, the group continued by identifying potential solutions to current shortcomings of the manufacturing status quo. After narrowing down the options, the ultrasonic flaw detector appeared to have the highest potential for success in Company X's factories. The group began doing research on what physical components would go into this solution. They found pricing for all of the various parts of such a device as well as estimated labor, maintenance, and implementation costs. After estimating these costs, the team began the construction of a detailed financial model to generate the hypothetical net present value of such a tool. After presenting two times to a panel of Company X employees, the group decided to focus only on cost savings for Company X, and not the potential revenues of selling the whole solution. They ran a sensitivity analysis on all of the factors that contributed to the NPV of the project, and discovered that the estimated percentage of scrapped product resulting from gas leaks and the percentage of gas lost to leaks contributed the most to the NPV.
ContributorsFlick, Jacob (Co-author) / Alam, Mustafa (Co-author) / Nguyen, Mong (Co-author) / Zhang, Zihan (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / WPC Graduate Programs (Contributor) / School of International Letters and Culture (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132874-Thumbnail Image.png
Description
The purpose and goal of this project is to pinpoint a potential use case for Company X to invest in to sell their 5G modems. As 5G technology is growing to be a dominant force in global markets, Company X is looking to capitalize on the emerging technology by selling

The purpose and goal of this project is to pinpoint a potential use case for Company X to invest in to sell their 5G modems. As 5G technology is growing to be a dominant force in global markets, Company X is looking to capitalize on the emerging technology by selling their 5G modems for Internet of Things applications. Research and gathering of information involved understanding cellular connectivity, modem operations and applications, companies in related industries, the history of the wireless spectrum, the pillars of 5G technology, and the plethora of use cases enabled by 5G. Looking at smart street lights as a potential use case for Company X, analyses were conducted to recommend whether Company X should invest in smart street lights. These analyses ranged from researching Company X’s competitors to performing a pro forma financial analysis to see if it is financially viable for Company X to enter the smart street light industry. The final recommendation is for Company X to not invest in smart street lighting.
ContributorsPannala, Ishan R (Co-author) / Alcaron, Sandra (Co-author) / Nilles, Robert (Co-author) / Wells, Dwight (Co-author) / Simonson, Mark (Thesis director) / Reber, Kevin (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135078-Thumbnail Image.png
Description
The Internet of Things has spread Wi-Fi connectivity to household and business devices everywhere. It is important that we understand IoT's risks and capabilities as its popularity continues to grow, and that we recognize new and exciting uses for it. In this project, the ESP8266 Wi-Fi controller, powered by a

The Internet of Things has spread Wi-Fi connectivity to household and business devices everywhere. It is important that we understand IoT's risks and capabilities as its popularity continues to grow, and that we recognize new and exciting uses for it. In this project, the ESP8266 Wi-Fi controller, powered by a lithium battery, is used to transmit messages from a user's browser or mobile phone to an OLED display. The ESP8266 is a system on a chip (SOC) which boasts impressive features such as full TCP/IP stack, 1 MB of flash memory, and a 32-bit CPU. A web server is started on the ESP8266 which listens at a specific port and relays any strings from the client back to the display, acting as a simple notification system for a busy individual such as a professor. The difficulties with this project stemmed from the security protocol of Arizona State University's Wi-Fi network and from the limitations of the Wi-Fi chip itself. Several solutions are suggested, such as utilizing a personal cellular broadband router and polling a database for stored strings through a service such as Data.Sparkfun.com.
ContributorsKovatcheva, Simona Kamenova (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134822-Thumbnail Image.png
Description
Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of

Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of smart cities. Company X is a leader in the semiconductor industry looking to grow its revenue in the IoT space. This thesis will address how Company X can deliver IoT solutions to government municipalities with the goal of simultaneously increasing revenue through value-added engagement and decreasing spending by more efficiently managing infrastructure upgrades.
ContributorsJiang, Yichun (Co-author) / Davidoff, Eric (Co-author) / Dawoud, Mariam (Co-author) / Rodenbaugh, Ryan (Co-author) / Sinclair, Brynn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Psychology (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135528-Thumbnail Image.png
Description
Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy

Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy the needs of a local faculty member who wished to know the water levels available in his office water cooler, potentially saving him the disappointment of discovering an empty container. 


This project utilizes an Arduino microprocessor, an ESP 8266 Wi-Fi module, and a variety of sensors to detect water levels in filtered water unit located on the fourth floor of the the Brickyard Building, BYENG, at Arizona State University. This implementation will not interfere with the system already set in place to store and transfer water. The level of accuracy in water levels is expected to give the ability to discern +/- 1.5 liters of water. This system will send will send information to a created web service from which anyone with internet capabilities can gain access. The interface will display current water levels and attempt to predict at what time the water levels will be depleted. In the short term, this information will be useful for individuals on the floor to discern when they are able to extract water from the system. Overtime, the information this system gathers will map the drinking trends of the floor and can allow for a scheduling of water delivery that is more consistent with the demand of those working on the floor.
ContributorsEnriquez, Alexander (Author) / Meuth, Ryan (Thesis director) / Burger, Kevin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Supply chain sustainability has become an increasingly important topic for corporations due to consumer demands, regulatory requirements, and employee retention and productivity. Since more and more stakeholders are beginning to care about sustainability, companies are looking at how they can reduce their carbon footprint without it leading to higher costs. Although sustainable supply chain

Supply chain sustainability has become an increasingly important topic for corporations due to consumer demands, regulatory requirements, and employee retention and productivity. Since more and more stakeholders are beginning to care about sustainability, companies are looking at how they can reduce their carbon footprint without it leading to higher costs. Although sustainable supply chain operations are often associated with higher costs, new technology has surfaced within the last decade that makes this association come into question. This paper serves as an investigation on whether or not implementation of recent technology will not only make for more sustainable supply chains, but also bring cost savings to a company. For the sake of simplicity, this paper analyzes the topic within the context of the consumer packaged goods (CPG) industry. The three categories of technology that were evaluated are artificial intelligence, Internet of Things, and data integration systems. Internship projects and/or published case studies and articles were examined to explore the relationship between the technology, supply chain sustainability, and costs. The findings of this paper indicate that recent technology offers companies innovative sustainability solutions to supply chains without sacrificing cost. This calls for CPG companies to invest in and implement technology that allows for more sustainable supply chains. Shying away from this because of cost concerns is no longer necessary.
ContributorsDixon, Logan (Author) / Printezis, Antonios (Thesis director) / Macias, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05