Matching Items (2)
Filtering by

Clear all filters

137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
135528-Thumbnail Image.png
Description
Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy

Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy the needs of a local faculty member who wished to know the water levels available in his office water cooler, potentially saving him the disappointment of discovering an empty container. 


This project utilizes an Arduino microprocessor, an ESP 8266 Wi-Fi module, and a variety of sensors to detect water levels in filtered water unit located on the fourth floor of the the Brickyard Building, BYENG, at Arizona State University. This implementation will not interfere with the system already set in place to store and transfer water. The level of accuracy in water levels is expected to give the ability to discern +/- 1.5 liters of water. This system will send will send information to a created web service from which anyone with internet capabilities can gain access. The interface will display current water levels and attempt to predict at what time the water levels will be depleted. In the short term, this information will be useful for individuals on the floor to discern when they are able to extract water from the system. Overtime, the information this system gathers will map the drinking trends of the floor and can allow for a scheduling of water delivery that is more consistent with the demand of those working on the floor.
ContributorsEnriquez, Alexander (Author) / Meuth, Ryan (Thesis director) / Burger, Kevin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05