Matching Items (21)
152992-Thumbnail Image.png
Description
In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in

In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in an icicle plot end up being small and indistinguishable. In this thesis, by maintaining the positive characteristics of traditional

icicle plots and incorporating new features such as dynamic diagram and active layer, we developed an interactive visualization that allows the user to selectively drill down or roll up to review different levels of data in a large hierarchy, to change the hierarchical

structure to detect potential patterns, and to maintain an overall understanding of the

current hierarchical structure.
ContributorsWu, Bi (Author) / Maciejewski, Ross (Thesis advisor) / Runger, George C. (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014
156023-Thumbnail Image.png
Description
This paper presents the results of an empirical analysis of deceptive data visualizations paired with explanatory text. Data visualizations are used to communicate information about important social issues to large audiences and are found in the news, social media, and the Internet (Kirk, 2012). Modern technology and software allow people

This paper presents the results of an empirical analysis of deceptive data visualizations paired with explanatory text. Data visualizations are used to communicate information about important social issues to large audiences and are found in the news, social media, and the Internet (Kirk, 2012). Modern technology and software allow people and organizations to easily produce and publish data visualizations, contributing to data visualizations becoming more prevalent as a means of communicating important information (Sue & Griffin, 2016). Ethical transgressions in data visualizations are the intentional or unintentional use of deceptive techniques with the potential of altering the audience’s understanding of the information being presented (Pandey et al., 2015). While many have discussed the importance of ethics in data visualization, scientists have only recently started to look at how deceptive data visualizations affect the reader. This study was administered as an on-line user survey and was designed to test the deceptive potential of data visualizations when they are accompanied by a paragraph of text. The study consisted of a demographic questionnaire, chart familiarity assessment, and data visualization survey. A total of 256 participants completed the survey and were evenly distributed between a control (non-deceptive) survey or a test (deceptive) survey in which participant were asked to observe a paragraph of text and data visualization paired together. Participants then answered a question relevant to the observed information to measure how they perceived the information to be. The individual differences between demographic groups and their responses were analyzed to understand how these groups reacted to deceptive data visualizations compared to the control group. The results of the study confirmed that deceptive techniques in data visualizations caused participants to misinterpret the information in the deceptive data visualizations even when they were accompanied by a paragraph of explanatory text. Furthermore, certain demographics and comfort levels with chart types were more susceptible to certain types of deceptive techniques. These results highlight the importance of education and practice in the area of data visualizations to ensure deceptive practices are not utilized and to avoid potential misinformation, especially when information can be called into question.
ContributorsO'Brien, Shaun (Author) / Laure, Claire (Thesis advisor) / Brumberger, Eva (Committee member) / D'Angelo, Barbara J. (Committee member) / Arizona State University (Publisher)
Created2017
133159-Thumbnail Image.png
Description
Our lives are documented and facilitated by the internet. Given that an increasing proportion of time is being spent online, search and browsing history offers a unique frame of reference to conduct a qualitative study since it contains individual goals, day-to-day experiences, illicit thoughts, and questions, all while capturing sentiments

Our lives are documented and facilitated by the internet. Given that an increasing proportion of time is being spent online, search and browsing history offers a unique frame of reference to conduct a qualitative study since it contains individual goals, day-to-day experiences, illicit thoughts, and questions, all while capturing sentiments rather than statistics. Seeing this recorded daily activity mapped out over the course of several years would hopefully provide a startling reminder of how life can be accurately and simply described as a series of constantly evolving interests and intentions, as well as give a sense of how exhaustively massive internet companies collect private information online. The search engine giant Google offers its users the transparency and freedom to export and download an archive of their web activity through a service known as Google Takeout. We propose using this service to empower ordinary individuals with Google accounts by developing a comprehensive and qualitative approach to understanding and gaining insights about their personal behavior online. In this paper, we first define and analyze the need for such a product. Then we conduct a variety of intent and interest-sensitive computational analysis methods on a sample browser history to explore and contextualize emergent trends, as a proof of concept. Finally, we create a blueprint for building an interactive application which uses our approach to generate dynamic dashboards and unique user profiles from search and browsing data.
ContributorsLi, Jason (Author) / Sopha, Matthew (Thesis director) / Shutters, Shade (Committee member) / Department of Information Systems (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
154057-Thumbnail Image.png
Description
The Global Change Assessment Model (GCAM) is an integrated assessment tool for exploring consequences and responses to global change. However, the current iteration of GCAM relies on NetCDF file outputs which need to be exported for visualization and analysis purposes. Such a requirement limits the uptake of this modeling platform

The Global Change Assessment Model (GCAM) is an integrated assessment tool for exploring consequences and responses to global change. However, the current iteration of GCAM relies on NetCDF file outputs which need to be exported for visualization and analysis purposes. Such a requirement limits the uptake of this modeling platform for analysts that may wish to explore future scenarios. This work has focused on a web-based geovisual analytics interface for GCAM. Challenges of this work include enabling both domain expert and model experts to be able to functionally explore the model. Furthermore, scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment. The inter-comparison of scenario analysis remains a big challenge in both the climate science and visualization communities. In a close collaboration with the Global Change Assessment Model team, I developed the first visual analytics interface for GCAM with a series of interactive functions to help users understand the simulated impact of climate change on sectors of the global economy, and at the same time allow them to explore inter comparison of scenario analysis with GCAM models. This tool implements a hierarchical clustering approach to allow inter-comparison and similarity analysis among multiple scenarios over space, time, and multiple attributes through a set of coordinated multiple views. After working with this tool, the scientists from the GCAM team agree that the geovisual analytics tool can facilitate scenario exploration and enable scientific insight gaining process into scenario comparison. To demonstrate my work, I present two case studies, one of them explores the potential impact that the China south-north water transportation project in the Yangtze River basin will have on projected water demands. The other case study using GCAM models demonstrates how the impact of spatial variations and scales on similarity analysis of climate scenarios varies at world, continental, and country scales.
ContributorsChang, Zheng (Author) / Maciejewski, Ross (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / White, Dave (Committee member) / Luo, Wei (Committee member) / Arizona State University (Publisher)
Created2015
154372-Thumbnail Image.png
Description
Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made for a very specific task in a very specific

field (i.e. health, traffic, weather forecasts, …etc.). Since the main users of

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made for a very specific task in a very specific

field (i.e. health, traffic, weather forecasts, …etc.). Since the main users of these apps are

researchers, physicians or generally data collectors, it can be extremely challenging for

them to make adjustments or modifications to these applications given that they have

limited or no technical background in coding. Another common issue with MDC

applications is that its functionalities are limited only to data collection and storing. Other

functionalities such as data visualizations, data sharing, data synchronization and/or data updating are rarely found in MDC apps.

This thesis tries to solve the problems mentioned above by adding the following

two enhancements: (a) the ability for data collectors to customize their own applications

based on the project they’re working on, (b) and introducing new tools that would help

manage the collected data. This will be achieved by creating a Java standalone

application where data collectors can use to design their own mobile apps in a userfriendly Graphical User Interface (GUI). Once the app has been completely designed

using the Java tool, a new iOS mobile application would be automatically generated

based on the user’s input. By using this tool, researchers now are able to create mobile

applications that are completely tailored to their needs, in addition to enjoying new

features such as visualize and analyze data, synchronize data to the remote database,

share data with other data collectors and update existing data.
ContributorsAl-Kaf, Zahra M (Author) / Lindquist, Timothy E (Thesis advisor) / Bansal, Srividya (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2016
155309-Thumbnail Image.png
Description
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm

Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars.

Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona’s Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
ContributorsCherukuru, Nihanth Wagmi (Author) / Calhoun, Ronald (Thesis advisor) / Newsom, Rob (Committee member) / Huang, Huei Ping (Committee member) / Chen, Kangping (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2017
137718-Thumbnail Image.png
Description
This thesis concerns the adoption of health information technology in the medical sector, specifically electronic health records (EHRs). EHRs have been seen as a great benefit to the healthcare system and will improve the quality of patient care. The federal government, has seen the benefit EHRs can offer, has been

This thesis concerns the adoption of health information technology in the medical sector, specifically electronic health records (EHRs). EHRs have been seen as a great benefit to the healthcare system and will improve the quality of patient care. The federal government, has seen the benefit EHRs can offer, has been advocating the use and adoption of EHR for nearly a decade now. They have created policies that guide medical providers on how to implement EHRs. However, this thesis concerns the attitudes medical providers in Phoenix have towards government implementation. By interviewing these individuals and cross-referencing their answers with the literature this thesis wants to discover the pitfalls of federal government policy toward EHR implementation and EHR implementation in general. What this thesis found was that there are pitfalls that the federal government has failed to address including loss of provider productivity, lack of interoperability, and workflow improvement. However, the providers do say there is still a place for government to be involved in the implementation of EHR.
ContributorsKaldawi, Nicholas Emad (Author) / Lewis, Paul (Thesis director) / Cortese, Denis (Committee member) / Jones, Ruth (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05
135716-Thumbnail Image.png
Description
This thesis explores a method of how political information could be distributed to the public and asks the question, what is the best way to provide voters with all of the information they need to cast an informed vote? It involved the creation of a website, www.azleglive.info, which republishes state

This thesis explores a method of how political information could be distributed to the public and asks the question, what is the best way to provide voters with all of the information they need to cast an informed vote? It involved the creation of a website, www.azleglive.info, which republishes state legislative data in interactive and visually condensed formats and asked users to compare it to the existing Arizona State Legislature website on the metrics of depth of information, usability, and clarity. It also asked what resources users would utilize in order to cast a vote in the next election. Ultimately, the majority of users determined that the new website added needed usability and clarity to available legislative information, but that both websites would be useful when voting. In conclusion, the responsibility of disseminating useful information to voters is most likely to be effective when distributed among a variety of sources.
ContributorsJosephson, Zachary (Co-author) / Umaretiya, Amy (Co-author) / Jones, Ruth (Thesis director) / Woodall, Gina (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Politics and Global Studies (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148180-Thumbnail Image.png
Description

In this Barrett Honors Thesis, I developed a model to quantify the complexity of Sankey diagrams, which are a type of visualization technique that shows flow between groups. To do this, I created a carefully controlled dataset of synthetic Sankey diagrams of varying sizes as study stimuli. Then, a pair

In this Barrett Honors Thesis, I developed a model to quantify the complexity of Sankey diagrams, which are a type of visualization technique that shows flow between groups. To do this, I created a carefully controlled dataset of synthetic Sankey diagrams of varying sizes as study stimuli. Then, a pair of online crowdsourced user studies were conducted and analyzed. User performance for Sankey diagrams of varying size and features (number of groups, number of timesteps, and number of flow crossings) were algorithmically modeled as a formula to quantify the complexity of these diagrams. Model accuracy was measured based on the performance of users in the second crowdsourced study. The results of my experiment conclusively demonstrates that the algorithmic complexity formula I created closely models the visual complexity of the Sankey Diagrams in the dataset.

ContributorsGinjpalli, Shashank (Author) / Bryan, Chris (Thesis director) / Hsiao, Sharon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Java Mission-planning and Analysis for Remote Sensing (JMARS) is a geospatial software that provides mission planning and data-analysis tools with access to orbital data for planetary bodies like Mars and Venus. Using JMARS, terrain scenes can be prepared with an assortment of data layers along with any additional data sets.

Java Mission-planning and Analysis for Remote Sensing (JMARS) is a geospatial software that provides mission planning and data-analysis tools with access to orbital data for planetary bodies like Mars and Venus. Using JMARS, terrain scenes can be prepared with an assortment of data layers along with any additional data sets. These scenes can then be exported into the JMARS extended reality platform, which includes both augmented reality and virtual reality experiences. JMARS VR Viewer is a virtual reality experience that allows users to view three-dimensional terrain data in a fully immersive and interactive way. This tool also provides a collaborative environment for users to host a terrain scene where people can analyze the data together. The purpose of the project is to design a set of interactions in virtual reality to try and address these questions: (1) how do we make sense of larger complex geospatial datasets, (2) how can we design interactions that assist users in understanding layered data in both an individual and collaborative work environment, and (3) what are the effects on the user’s cognitive overload while using these interfaces.

ContributorsWang, Olivia (Author) / LiKamWa, Robert (Thesis director) / Gold, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05