Matching Items (7)

Filtering by

Clear all filters

133725-Thumbnail Image.png

An Algorithm for the Automatic Detection of Vocal Flutter

Description

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have been proposed as a promising indicator of neurological decline. However, speech changes are typically measured subjectively by a clinician. These perceptual ratings can vary widely between clinicians and within the same clinician on different patient visits, making clinical ratings less sensitive to subtle early indicators. In this paper, we propose an algorithm for the objective measurement of flutter, a quasi-sinusoidal modulation of fundamental frequency that manifests in the speech of some ALS patients. The algorithm detailed in this paper employs long-term average spectral analysis on the residual F0 track of a sustained phonation to detect the presence of flutter and is robust to longitudinal drifts in F0. The algorithm is evaluated on a longitudinal speech dataset of ALS patients at varying stages in their prognosis. Benchmarking with two stages of perceptual ratings provided by an expert speech pathologist indicate that the algorithm follows perceptual ratings with moderate accuracy and can objectively detect flutter in instances where the variability of the perceptual rating causes uncertainty.

Contributors

Agent

Created

Date Created
2018-05

135425-Thumbnail Image.png

Edge Detection from Spectral Phase Data

Description

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.

Contributors

Agent

Created

Date Created
2016-05

153310-Thumbnail Image.png

Multiple detection and tracking in complex time-varying environments

Description

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting information from multiple measurements due to multipath returns in the urban terrain. The path likelihood probability is calculated by considering associations between measurements and multipath returns, and an adaptive clustering algorithm is used to estimate the number of target and their corresponding parameters. The performance of the proposed algorithm is demonstrated for different multiple target scenarios and evaluated using the optimal subpattern assignment metric. The underwater environment provides a very challenging communication channel due to its highly time-varying nature, resulting in large distortions due to multipath and Doppler-scaling, and frequency-dependent path loss. A model-based wideband UWA channel estimation algorithm is first proposed to estimate the channel support and the wideband spreading function coefficients. A nonlinear frequency modulated signaling scheme is proposed that is matched to the wideband characteristics of the underwater environment. Constraints on the signal parameters are derived to optimally reduce multiple access interference and the UWA channel effects. The signaling scheme is compared to a code division multiple access (CDMA) scheme to demonstrate its improved bit error rate performance. The overall multi-user communication system performance is finally analyzed by first estimating the UWA channel and then designing the signaling scheme for multiple communications users.

Contributors

Agent

Created

Date Created
2014

154672-Thumbnail Image.png

Transmit waveform design for coexisting radar and communications systems

Description

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-to-interference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both systems by co-designing a common transmit waveform.

When concentrating on improving radar tracking performance, a pulsed radar that is tracking a single target coexisting with high powered communications interference is considered. Although the Cramer-Rao lower bound (CRLB) on the covariance of an unbiased estimator of deterministic parameters provides a bound on the estimation mean squared error (MSE), there exists an SINR threshold at which estimator covariance rapidly deviates from the CRLB. After demonstrating that different radar waveforms experience different estimation SINR thresholds using the Barankin bound (BB), a new radar waveform design method is proposed based on predicting the waveform-dependent BB SINR threshold under low SINR operating conditions.

A novel method of predicting the SINR threshold value for maximum likelihood estimation (MLE) is proposed. A relationship is shown to exist between the formulation of the BB kernel and the probability of selecting sidelobes for the MLE. This relationship is demonstrated as an accurate means of threshold prediction for the radar target parameter estimation of frequency, time-delay and angle-of-arrival.

For the co-design radar and communications system problem, the use of a common transmit waveform for a pulse-Doppler radar and a multiuser communications system is proposed. The signaling scheme for each system is selected from a class of waveforms with nonlinear phase function by optimizing the waveform parameters to minimize interference between the two systems and interference among communications users. Using multi-objective optimization, a trade-off in system performance is demonstrated when selecting waveforms that minimize both system interference and tracking MSE.

Contributors

Agent

Created

Date Created
2016

156805-Thumbnail Image.png

Signal Processing and Machine Learning Techniques Towards Various Real-World Applications

Description

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.

Contributors

Agent

Created

Date Created
2018

155613-Thumbnail Image.png

Developmental acoustic analysis of the

Description

The purpose of this study was to identify acoustic markers that correlate with accurate and inaccurate /r/ production in children ages 5-8 using signal processing. In addition, the researcher aimed to identify predictive acoustic markers that relate to changes in

The purpose of this study was to identify acoustic markers that correlate with accurate and inaccurate /r/ production in children ages 5-8 using signal processing. In addition, the researcher aimed to identify predictive acoustic markers that relate to changes in /r/ accuracy. A total of 35 children (23 accurate, 12 inaccurate, 8 longitudinal) were recorded. Computerized stimuli were presented on a PC laptop computer and the children were asked to do five tasks to elicit spontaneous and imitated /r/ production in all positions. Files were edited and analyzed using a filter bank approach centered at 40 frequencies based on the Mel-scale. T-tests were used to compare spectral energy of tokens between accurate and inaccurate groups and additional t-tests were used to compare duration of accurate and inaccurate files. Results included significant differences between the accurate and inaccurate productions of /r/, notable differences in the 24-26 mel bin range, and longer duration of inaccurate /r/ than accurate. Signal processing successfully identified acoustic features of accurate and inaccurate production of /r/ and candidate predictive markers that may be associated with acquisition of /r/.

Contributors

Agent

Created

Date Created
2017

158175-Thumbnail Image.png

Anticipating Postoperative Delirium During Cardiac Surgeries Involving Deep Hypothermia Circulatory Arrest

Description

Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA)

Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA) is employed to protect patients and provide time for surgeons to complete repairs on the basis that reducing body temperature suppresses the metabolic rate. Supplementary surgical techniques can be employed to reinforce the brain's protection and increase the duration circulation can be suspended. Even then, protection is not completely guaranteed though. A medical condition that can arise early in recovery is postoperative delirium, which is correlated with poor long term outcome. This study develops a methodology to intraoperatively monitor neurophysiology through electroencephalography (EEG) and anticipate postoperative delirium. The earliest opportunity to detect occurrences of complications through EEG is immediately following DHCA during warming. The first observable electrophysiological activity after being completely suppressed is a phenomenon known as burst suppression, which is related to the brain's metabolic state and recovery of nominal neurological function. A metric termed burst suppression duty cycle (BSDC) is developed to characterize the changing electrophysiological dynamics. Predictions of postoperative delirium incidences are made by identifying deviations in the way these dynamics evolve. Sixteen cases are examined in this study. Accurate predictions can be made, where on average 89.74% of cases are correctly classified when burst suppression concludes and 78.10% when burst suppression begins. The best case receiver operating characteristic curve has an area under its convex hull of 0.8988, whereas the worst case area under the hull is 0.7889. These results demonstrate the feasibility of monitoring BSDC to anticipate postoperative delirium during burst suppression. They also motivate a further analysis on identifying footprints of causal mechanisms of neural injury within BSDC. Being able to raise warning signs of postoperative delirium early provides an opportunity to intervene and potentially avert neurological complications. Doing so would improve the success rate and quality of life after surgery.

Contributors

Agent

Created

Date Created
2020