Matching Items (8)

Filtering by

Clear all filters

133725-Thumbnail Image.png

An Algorithm for the Automatic Detection of Vocal Flutter

Description

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have been proposed as a promising indicator of neurological decline. However, speech changes are typically measured subjectively by a clinician. These perceptual ratings can vary widely between clinicians and within the same clinician on different patient visits, making clinical ratings less sensitive to subtle early indicators. In this paper, we propose an algorithm for the objective measurement of flutter, a quasi-sinusoidal modulation of fundamental frequency that manifests in the speech of some ALS patients. The algorithm detailed in this paper employs long-term average spectral analysis on the residual F0 track of a sustained phonation to detect the presence of flutter and is robust to longitudinal drifts in F0. The algorithm is evaluated on a longitudinal speech dataset of ALS patients at varying stages in their prognosis. Benchmarking with two stages of perceptual ratings provided by an expert speech pathologist indicate that the algorithm follows perceptual ratings with moderate accuracy and can objectively detect flutter in instances where the variability of the perceptual rating causes uncertainty.

Contributors

Agent

Created

Date Created
2018-05

136314-Thumbnail Image.png

Visual Surround Sound and its Applications

Description

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.

Contributors

Agent

Created

Date Created
2015-05

135455-Thumbnail Image.png

Cost-Effective Proximity Object Sensing

Description

The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of

The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that are versatile, durable, low cost, and simple. Devices utilizing various acoustic and electromagnetic wave frequencies like ultrasonic rangefinders, radars, Lidar rangefinders, webcams, and infrared rangefinders and the concepts of Sensor Fusion, Frequency Modulated Continuous Wave radar, and Phased Arrays were explored. The effects of various factors on the propagation of different wave signals was also investigated. The devices selected to be incorporated into designs were the HB100 DRO Radar Doppler Sensor (as an FMCW radar), HC-SR04 Ultrasonic Sensor, and Maxbotix Ultrasonic Rangefinder \u2014 EZ3. Three designs were ultimately developed and dubbed the "Rad-Son Fusion", the "Tri-Beam Scanner", and the "Dual-Receiver Ranger". The "Rad-Son Fusion" employs the Sensor Fusion of an FMCW radar and Ultrasonic sensor through a weighted average of the distance reading from the two sensors. The "Tri-Beam Scanner" utilizes a beam-forming Digital Phased Array of ultrasonic sensors to scan its surroundings. The "Dual-Receiver Ranger" uses the convolved result from to two modified HC-SR04 sensors to determine the time of flight and ultimately an object's distance. After conducting hardware experiments to determine the feasibility of each design, the "Dual-Receiver Ranger" was prototyped and tested to demonstrate the potential of the concept. The designs were later compared based on proposed requirements and possible improvements and challenges associated with the designs are discussed.

Contributors

Agent

Created

Date Created
2016-05

147550-Thumbnail Image.png

Development of Frequency Selective Surfaces for RF Interrogator Design

Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

Contributors

Agent

Created

Date Created
2021-05

132037-Thumbnail Image.png

DESIGN OF SIGNAL PROCESSING ALGORITHMS AND DEVELOPMENT OF A REAL-TIME SYSTEM FOR MAPPING AUDIO TO HAPTICS FOR COCHLEAR IMPLANT USERS

Description

In the field of electronic music, haptic feedback is a crucial feature of digital musical instruments (DMIs) because it gives the musician a more immersive experience. This feedback might come in the form of a wearable haptic device that vibrates

In the field of electronic music, haptic feedback is a crucial feature of digital musical instruments (DMIs) because it gives the musician a more immersive experience. This feedback might come in the form of a wearable haptic device that vibrates in response to music. Such advancements in the electronic music field are applicable to the field of speech and hearing. More specifically, wearable haptic feedback devices can enhance the musical listening experience for people who use cochlear implant (CI) devices.
This Honors Thesis is a continuation of Prof. Lauren Hayes’s and Dr. Xin Luo’s research initiative, Haptic Electronic Audio Research into Musical Experience (HEAR-ME), which investigates how to enhance the musical listening experience for CI users using a wearable haptic system. The goals of this Honors Thesis are to adapt Prof. Hayes’s system code from the Max visual programming language into the C++ object-oriented programming language and to study the results of the developed C++ codes. This adaptation allows the system to operate in real-time and independently of a computer.
Towards these goals, two signal processing algorithms were developed and programmed in C++. The first algorithm is a thresholding method, which outputs a pulse of a predefined width when the input signal falls below some threshold in amplitude. The second algorithm is a root-mean-square (RMS) method, which outputs a pulse-width modulation signal with a fixed period and with a duty cycle dependent on the RMS of the input signal. The thresholding method was found to work best with speech, and the RMS method was found to work best with music. Future work entails the design of adaptive signal processing algorithms to allow the system to work more effectively on speech in a noisy environment and to emphasize a variety of elements in music.

Contributors

Agent

Created

Date Created
2019-12

132193-Thumbnail Image.png

The Capon-Bartlett Cross Spectrum Resolution Study

Description

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation. The Capon algorithm is known as the "adaptive" approach to power spectrum estimation because its filter impulse responses are adapted to fit the characteristics of the data. The Bartlett method is known as the "conventional" approach to power spectrum estimation (PSE) and has a fixed deterministic filter. Both techniques rely on the Sample Covariance Matrix (SCM). The first objective of this project is to analyze the origins and characteristics of the Capon and Bartlett methods to understand their abilities to resolve signals closely spaced in frequency. Taking into consideration the Capon and Bartlett's reliance on the SCM, there is a novelty in combining these two algorithms using their cross-coherence. The second objective of this project is to analyze the performance of the Capon-Bartlett Cross Spectra. This study will involve Matlab simulations of known test cases and comparisons with approximate theoretical predictions.

Contributors

Agent

Created

Date Created
2019-05

166161-Thumbnail Image.png

Demodulation and Leading-Edge Detection for LiDAR Pulses

Description

The idea for this thesis emerged from my senior design capstone project, A Wearable Threat Awareness System. A TFmini-S LiDAR sensor is used as one component of this system; the functionality of and signal processing behind this type of sensor

The idea for this thesis emerged from my senior design capstone project, A Wearable Threat Awareness System. A TFmini-S LiDAR sensor is used as one component of this system; the functionality of and signal processing behind this type of sensor are elucidated in this document. Conceptual implementations of the optical and digital stages of the signal processing is described in some detail. Following an introduction in which some general background knowledge about LiDAR is set forth, the body of the thesis is organized into two main sections. The first section focuses on optical processing to demodulate the received signal backscattered from the target object. This section describes the key steps in demodulation and illustrates them with computer simulation. A series of graphs capture the mathematical form of the signal as it progresses through the optical processing stages, ultimately yielding the baseband envelope which is converted to digital form for estimation of the leading edge of the pulse waveform using a digital algorithm. The next section is on range estimation. It describes the digital algorithm designed to estimate the arrival time of the leading edge of the optical pulse signal. This enables the pulse’s time of flight to be estimated, thus determining the distance between the LiDAR and the target. Performance of this algorithm is assessed with four different levels of noise. A calculation of the error in the leading-edge detection in terms of distance is also included to provide more insight into the algorithm’s accuracy.

Contributors

Agent

Created

Date Created
2022-05

165040-Thumbnail Image.png

Flexible Fractal-Inspired Metamaterial for Head Imaging at 3 T MRI

Description

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.

Contributors

Agent

Created

Date Created
2022-05