Matching Items (5)

Filtering by

Clear all filters

136314-Thumbnail Image.png

Visual Surround Sound and its Applications

Description

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.

Contributors

Agent

Created

Date Created
2015-05

137100-Thumbnail Image.png

Maximum Entropy Surrogation in Multiple Channel Signal Detection

Description

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.

Contributors

Agent

Created

Date Created
2014-05

147972-Thumbnail Image.png

Audio Waveform Sample SVD Compression and Impact on Performance

Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

Contributors

Agent

Created

Date Created
2021-05

157817-Thumbnail Image.png

Distributed Reception in the Presence of Gaussian Interference

Description

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for a certain adaptable system model. Asymptotic performances of these strategies and algorithms to compute them are developed. A jointly-compressed lattice code with proper configuration performs best of all strategies investigated.

Contributors

Agent

Created

Date Created
2019

158175-Thumbnail Image.png

Anticipating Postoperative Delirium During Cardiac Surgeries Involving Deep Hypothermia Circulatory Arrest

Description

Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA)

Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA) is employed to protect patients and provide time for surgeons to complete repairs on the basis that reducing body temperature suppresses the metabolic rate. Supplementary surgical techniques can be employed to reinforce the brain's protection and increase the duration circulation can be suspended. Even then, protection is not completely guaranteed though. A medical condition that can arise early in recovery is postoperative delirium, which is correlated with poor long term outcome. This study develops a methodology to intraoperatively monitor neurophysiology through electroencephalography (EEG) and anticipate postoperative delirium. The earliest opportunity to detect occurrences of complications through EEG is immediately following DHCA during warming. The first observable electrophysiological activity after being completely suppressed is a phenomenon known as burst suppression, which is related to the brain's metabolic state and recovery of nominal neurological function. A metric termed burst suppression duty cycle (BSDC) is developed to characterize the changing electrophysiological dynamics. Predictions of postoperative delirium incidences are made by identifying deviations in the way these dynamics evolve. Sixteen cases are examined in this study. Accurate predictions can be made, where on average 89.74% of cases are correctly classified when burst suppression concludes and 78.10% when burst suppression begins. The best case receiver operating characteristic curve has an area under its convex hull of 0.8988, whereas the worst case area under the hull is 0.7889. These results demonstrate the feasibility of monitoring BSDC to anticipate postoperative delirium during burst suppression. They also motivate a further analysis on identifying footprints of causal mechanisms of neural injury within BSDC. Being able to raise warning signs of postoperative delirium early provides an opportunity to intervene and potentially avert neurological complications. Doing so would improve the success rate and quality of life after surgery.

Contributors

Agent

Created

Date Created
2020