Matching Items (4)
Filtering by

Clear all filters

134691-Thumbnail Image.png
Description
Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased

Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased cell packing density, and abnormal dendritic branching. Our lab previously created and characterized the A140V mouse model of atypical Rett syndrome in which the males are viable. Hippocampal and cerebellar granule neurons in A140V male mice have reduced soma and nuclear size compared to wild type. We also found that components of the mTOR pathway including rictor, 4E-BP-1, and mTOR, were reduced in A140V mutant mice. Quantitative PCR analysis also showed reduced IGFPB2 expression in A140V mice along with an upward trend in AKT levels that did not meet statistical significance. The objective of this study is i) to characterize the down regulation of AKT-mTOR pathway, and ii) to examine the effect of a genetic strategy to rescue mTOR pathway deficiencies in Mecp2 mutant mouse model. Genetic rescue of the mTOR pathway downregulation was done by crossing heterozygous female A140V mice with heterozygous male Tsc2 mice. Quantitative PCR analysis of A140V_Tsc2 RNA expression supported genetic rescue of mTOR pathway components, however, more testing is needed to fully characterize the rescue effect. Western blot analysis also showed reduction in phosphorylated AKT in Mecp2 A140V and T158A mutant mice, however, more testing is still needed to characterize the mTOR pathway in A140V_Tsc2 mice. Finally, other methods, such as a pharmacological approach, or transfection to increase mTOR pathway activity in cell lines, will be tested to determine if rescue of mTOR pathway activity ameliorate the Rett syndrome phenotype.
ContributorsGerald, Brittany Madison (Author) / Newbern, Jason (Thesis director) / Narayanan, Vinodh (Committee member) / Rangasamy, Sampath (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135005-Thumbnail Image.png
Description
Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been

Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been examined in the context of cancers since mutations can lead to the disruption of the cell cycle and unregulated cellular proliferation. In addition, germline mutations in the pathway have been shown to cause a group of syndromes known as RASopathies. RASopathies are marked by facial defects, seizures, developmental delays, and cognitive dysfunction often due to enhanced activation of the RAS signaling cascade. Although there are noted factors that play roles in neurological disease, such as a hyperactivated RAS signaling cascade, the pathogenesis of neurological defects is not fully understood. The Newbern lab uses conditional mutagenesis to examine how hyperactivating the RAS/MAPK pathway affects GABAergic neurons in a cortical microcircuit, especially during development. Inhibitory neurons are implicated in seizures and epilepsy is common in RASopathies, thus GABAergic neurons are of particular interest (Rauen, 2013). Gain-of-function ERK was not found to significantly alter global locomotion or anxiety-like behaviors. Interestingly, the mutant mice exhibited freezing behavior in the first twenty-two seconds of the open field assay that appeared to be consistent with absence seizures. Direct EEG recordings confirmed spontaneous seizure activity and mutants had a reduced seizure threshold. We hypothesized that these deficits were due to altered GABAergic neuron number. Indeed, mutant mice exhibited a 30% reduction in total cortical GABAergic neuron number. This effect appeared to be cell subtype specific, where neurons expressing somatostatin (SST) existed in similar numbers among controls and mutants but a significant decrease in the number of those expressing parvalbumin (PV) was observed. I hypothesized that a recently identified GABAergic neuron expressing vasoactive intestinal polypeptide (VIP) would also be affected in such a manner that fewer VIP neurons exist in the mutants than the wildtype. Subsequent histological studies in these mice found there to be no significant difference in VIP populations. Selective affects seem to only have an effect on the development of PV neurons in the cortex. Further studies are underway to define the mechanism responsible for aberrant GABAergic neuron development.
ContributorsGonzalez, Javier (Author) / Newbern, Jason (Thesis director) / Neisewander, Janet (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
132025-Thumbnail Image.png
Description
As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that

As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that is proteolytically cleaved from the type I transmembrane glycolytic amyloid precursor protein (APP). APP is highly conserved across species, suggesting the importance of APP in healthy brain functioning. However, when APP is cleaved through the amyloidogenic pathway it produces amyloid beta. The trafficking of APP within neurons has been a new endeavor for neurodegenerative disease research, as reduced retrograde trafficking of APP has been hypothesized to increase the likelihood of the amyloidogenic cleavage of APP, resulting in increased amyloid beta presence (Ye et al., 2017). The findings of this study suggest that transport of APP within neurons is significantly inhibited by increased extracellular glutamate concentration. The addition of human primary astrocytes within a human neuron co-culture allowed for significantly increased retrograde transport of APP within neurons, even within high glutamate conditions. These finding enhance the current field of research regarding astrocytes neuroprotective role within the brain, but bring attention to the role that astrocytes have upon regulation of the axonal transport of proteins within neurons.
ContributorsKlosterman, Katja Elisabeth (Author) / Ros, Alexandra (Thesis director) / Redding, Kevin (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
165172-Thumbnail Image.png
Description

Unipolar brush cells (UBCs) are glutamatergic neurons in the cerebellar cortex. Their morphology includes a brush-like dendrite, soma, and axon with large ‘mossy fiber’ terminals. They are classified as being excited or inhibited by glutamate (ON and OFF). UBCs may contribute to auditory and vestibular circuits whose dysfunction may lead

Unipolar brush cells (UBCs) are glutamatergic neurons in the cerebellar cortex. Their morphology includes a brush-like dendrite, soma, and axon with large ‘mossy fiber’ terminals. They are classified as being excited or inhibited by glutamate (ON and OFF). UBCs may contribute to auditory and vestibular circuits whose dysfunction may lead to tinnitus and ataxia, respectively. This study explores UBC physiology, connectivity in cerebellar circuits, and contributions to circuit dysfunction.

ContributorsAlgstam, Alexa Brynn (Author) / Balmer, Dr. Timothy (Thesis director) / Newbern, Dr. Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05