Matching Items (399)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
151478-Thumbnail Image.png
Description
Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge

Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens.
ContributorsPatel, Chetan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Jain, Tilak (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
150698-Thumbnail Image.png
Description
Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult

Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult motoneuron, MN5, in Drosophila melanogaster was used. This dissertation presents the following results. First, the natural variability of morphological parameters of the MN5 dendritic tree in control flies is not larger than 15%, making MN5 a suitable model for quantitative morphological analysis. Second, three-dimensional topological analyses reveals that different parts of the MN5 dendritic tree innervate spatially separated areas (termed "isoneuronal tiling"). Third, genetic manipulation of the MN5 excitability reveals that both increased and decreased activity lead to dendritic overgrowth; whereas decreased excitability promoted branch elongation, increased excitability enhanced dendritic branching. Next, testing the activity-regulated transcription factor AP-1 for its role in MN5 dendritic development reveals that neural activity enhanced AP-1 transcriptional activity, and that AP-1 expression lead to opposite dendrite fates depending on its expression timing during development. Whereas overexpression of AP-1 at early stages results in loss of dendrites, AP-1 overexpression after the expression of acetylcholine receptors and the formation of all primary dendrites in MN5 causes overgrowth. Fourth, MN5 has been used to examine dendritic development resulting from the expression of the human gene MeCP2, a transcriptional regulator involved in the neurodevelopmental disease Rett syndrome. Targeted expression of full-length human MeCP2 in MN5 causes impaired dendritic growth, showing for the first time the cellular consequences of MeCP2 expression in Drosophila neurons. This dendritic phenotype requires the methyl-binding domain of MeCP2 and the chromatin remodeling protein Osa. In summary, this work has fully established MN5 as a single-neuron model to study mechanisms underlying dendrite development, maintenance and degeneration, and to test the behavioral consequences resulting from dendritic growth misregulation. Furthermore, this thesis provides quantitative description of isoneuronal tiling of a central neuron, offers novel insight into activity- and AP-1 dependent developmental plasticity, and finally, it establishes Drosophila MN5 as a model to study some specific aspects of human diseases.
ContributorsVonhoff, Fernando Jaime (Author) / Duch, Carsten J (Thesis advisor) / Smith, Brian H. (Committee member) / Vu, Eric (Committee member) / Crook, Sharon (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
134691-Thumbnail Image.png
Description
Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased

Rett syndrome is a genetically based, X-linked neurodevelopmental disorder that affects 1 in 10,000 live female births. Approximately 95-97% of Rett syndrome cases are attributed to a mutation in the MECP2 gene. In the laboratory setting, key neuropathological phenotypes of Rett syndrome include small neuronal soma and nuclear size, increased cell packing density, and abnormal dendritic branching. Our lab previously created and characterized the A140V mouse model of atypical Rett syndrome in which the males are viable. Hippocampal and cerebellar granule neurons in A140V male mice have reduced soma and nuclear size compared to wild type. We also found that components of the mTOR pathway including rictor, 4E-BP-1, and mTOR, were reduced in A140V mutant mice. Quantitative PCR analysis also showed reduced IGFPB2 expression in A140V mice along with an upward trend in AKT levels that did not meet statistical significance. The objective of this study is i) to characterize the down regulation of AKT-mTOR pathway, and ii) to examine the effect of a genetic strategy to rescue mTOR pathway deficiencies in Mecp2 mutant mouse model. Genetic rescue of the mTOR pathway downregulation was done by crossing heterozygous female A140V mice with heterozygous male Tsc2 mice. Quantitative PCR analysis of A140V_Tsc2 RNA expression supported genetic rescue of mTOR pathway components, however, more testing is needed to fully characterize the rescue effect. Western blot analysis also showed reduction in phosphorylated AKT in Mecp2 A140V and T158A mutant mice, however, more testing is still needed to characterize the mTOR pathway in A140V_Tsc2 mice. Finally, other methods, such as a pharmacological approach, or transfection to increase mTOR pathway activity in cell lines, will be tested to determine if rescue of mTOR pathway activity ameliorate the Rett syndrome phenotype.
ContributorsGerald, Brittany Madison (Author) / Newbern, Jason (Thesis director) / Narayanan, Vinodh (Committee member) / Rangasamy, Sampath (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
135005-Thumbnail Image.png
Description
Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been

Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been examined in the context of cancers since mutations can lead to the disruption of the cell cycle and unregulated cellular proliferation. In addition, germline mutations in the pathway have been shown to cause a group of syndromes known as RASopathies. RASopathies are marked by facial defects, seizures, developmental delays, and cognitive dysfunction often due to enhanced activation of the RAS signaling cascade. Although there are noted factors that play roles in neurological disease, such as a hyperactivated RAS signaling cascade, the pathogenesis of neurological defects is not fully understood. The Newbern lab uses conditional mutagenesis to examine how hyperactivating the RAS/MAPK pathway affects GABAergic neurons in a cortical microcircuit, especially during development. Inhibitory neurons are implicated in seizures and epilepsy is common in RASopathies, thus GABAergic neurons are of particular interest (Rauen, 2013). Gain-of-function ERK was not found to significantly alter global locomotion or anxiety-like behaviors. Interestingly, the mutant mice exhibited freezing behavior in the first twenty-two seconds of the open field assay that appeared to be consistent with absence seizures. Direct EEG recordings confirmed spontaneous seizure activity and mutants had a reduced seizure threshold. We hypothesized that these deficits were due to altered GABAergic neuron number. Indeed, mutant mice exhibited a 30% reduction in total cortical GABAergic neuron number. This effect appeared to be cell subtype specific, where neurons expressing somatostatin (SST) existed in similar numbers among controls and mutants but a significant decrease in the number of those expressing parvalbumin (PV) was observed. I hypothesized that a recently identified GABAergic neuron expressing vasoactive intestinal polypeptide (VIP) would also be affected in such a manner that fewer VIP neurons exist in the mutants than the wildtype. Subsequent histological studies in these mice found there to be no significant difference in VIP populations. Selective affects seem to only have an effect on the development of PV neurons in the cortex. Further studies are underway to define the mechanism responsible for aberrant GABAergic neuron development.
ContributorsGonzalez, Javier (Author) / Newbern, Jason (Thesis director) / Neisewander, Janet (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05