Matching Items (9)
Filtering by

Clear all filters

156724-Thumbnail Image.png
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared

The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.

A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and

safe.

A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.

A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.

The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.

An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
ContributorsJhawar, Vaibhav (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
168360-Thumbnail Image.png
Description
As the world moves towards faster production times, quicker shipping, and overall, more demanding schedules, the humans caught in the loop are subject to physical duress causing them to physically break down and have muscular skeletal injuries. Surprisingly, with more automation in logistics houses, the remaining workers must be quicker

As the world moves towards faster production times, quicker shipping, and overall, more demanding schedules, the humans caught in the loop are subject to physical duress causing them to physically break down and have muscular skeletal injuries. Surprisingly, with more automation in logistics houses, the remaining workers must be quicker and do more, again resulting in muscular-skeletal injuries. To help alleviate this strain, a class of robotics and wearables has arisen wherein the human is assisted by a worn mechanical device. These devices, traditionally called exoskeletons, fall into two general categories: passive and active. Passive exoskeletons employ no electronics to activate their assistance and instead typically rely on the spring-like qualities of many materials. These are generally lighter weight than their active counterparts, but also lack the assistive power and can even interfere in other routine operations. Active exoskeletons, on the other hand, aim to avoid as much interference as possible by using electronics and power to assist the wearer. Properly executed, this can deliver power at the most opportune time and disengage from interference when not needed. However, if the tuning is mismatched from the human, it can unintentionally increase loads and possibly lead to other future injuries or harm. This dissertation investigates exoskeleton technology from two vantage points: the designer and the consumer. In the first, the creation of the Aerial Porter Exoskeleton (APEx) for the US Air Force (USAF). Testing of this first of its kind exoskeleton revealed a peak metabolic savings of 8.13% as it delivers 30 N-m of torque about each hip. It was tested extensively in live field conditions over 8 weeks to great success. The second section is an exploration of different commercially available exoskeletons and the development of a common set of standards/testing protocols is described. The results show a starting point for a set of standards to be used in a rapidly growing sector.
ContributorsMartin, William Brandon (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
171564-Thumbnail Image.png
Description
There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several

There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several applications for wearable sensor networks presented in this paper. The study will also present a motion capture system using inertial measurement units (IMUs) and a pressure-sensing insole with a control system for gait assistance using wearable sensors. This presentation will provide details on the implementation and calibration of the pressure-sensitive insole, the IMU-based motion capture system, as well as the hip exoskeleton robot. Furthermore, the estimation of the Ground Reaction Force (GRF) from the insole design and implementation of the motion tracking using quaternion will be discussed in this document.
ContributorsLi, Xunguang (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2022
187805-Thumbnail Image.png
Description
In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for exoskeletons have ranged from devices as simple spring-loaded systems to using sensors such as electromyography (EMG). Despite EMGs being very common, force sensing resistors (FSRs) can be used instead. There are multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for either medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This thesis is a continuation of my ASU Barrett honors thesis, Upper-Extremity Exoskeleton. While working on my honors thesis, I helped develop a design for an upper extremity exoskeleton based on the Wilmer orthosis design for Mayo Clinic. Building upon the design of an orthosis, for the master’s thesis, I developed an FSR control system that is designed using a Wheatstone bridge circuit that can provide a clean reliable signal as compared to the current EMG setup.
ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis advisor) / Aukes, Daniel (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2023
158726-Thumbnail Image.png
Description
The human shoulder plays an integral role in upper limb motor function. As the basis of arm motion, its performance is vital to the accomplishment of daily tasks. Impaired motor control, as a result of stroke or other disease, can cause errors in shoulder position to accumulate and propagate to

The human shoulder plays an integral role in upper limb motor function. As the basis of arm motion, its performance is vital to the accomplishment of daily tasks. Impaired motor control, as a result of stroke or other disease, can cause errors in shoulder position to accumulate and propagate to the entire arm. This is why it is a highlight of concern for clinicians and why it is an important point of study. One of the primary causes of impaired shoulder motor control is abnormal mechanical joint impedance, which can be modeled as a 2nd order system consisting of mass, spring and damper. Quantifying shoulder stiffness and damping between healthy and impaired subjects could help improve our collective understanding of how many different neuromuscular diseases impact arm performance. This improved understanding could even lead to better rehabilitation protocols for conditions such as stroke through better identification and targeting of damping dependent spasticity and stiffness dependent hypertonicity. Despite its importance, there is a fundamental knowledge gap in the understanding of shoulder impedance, mainly due to a lack of appropriate characterization tools. Therefore, in order to better quantify shoulder stiffness and damping, a novel low-inertia shoulder exoskeleton is introduced in this work. The device was developed using a newly pioneered parallel actuated robot architecture specifically designed to interface with complex biological joints like the shoulder, hip, wrist and ankle. In addition to presenting the kinematics and dynamics of the shoulder exoskeleton, a series of validation experiments are performed on a human shoulder mock-up to quantify its ability to estimate known impedance properties. Finally, some preliminary data from human experiments is provided to demonstrate the device’s ability to collect the measurements needed to estimate shoulder stiffness and damping while worn by a subject.
ContributorsHunt, Justin (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Sugar, Thomas (Committee member) / Yong, Sze Zheng (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2020
161316-Thumbnail Image.png
Description
This research seeks to present the design and testing of exoskeletons capable of assisting with walking gait, squatting, and fall prevention activities. The dissertation introduces wearable robotics and exoskeletons and then progresses into specific applications and developments in the targeted field. Following the introduction, chapters present and discuss different wearable

This research seeks to present the design and testing of exoskeletons capable of assisting with walking gait, squatting, and fall prevention activities. The dissertation introduces wearable robotics and exoskeletons and then progresses into specific applications and developments in the targeted field. Following the introduction, chapters present and discuss different wearable exoskeletons built to address known issues with workers and individuals with increased risk of fall. The presentation is concluded by an overall analysis of the resulting developments and identifying future work in the field.
ContributorsOlson, Jason Stewart (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2021
161730-Thumbnail Image.png
Description
Robotic assisted devices in gait rehabilitation have not seen penetration into clinical settings proportionate to the developments in this field. A possible reason for this is due to the development and evaluation of these devices from a predominantly engineering perspective. One way to mitigate this effect is to further include

Robotic assisted devices in gait rehabilitation have not seen penetration into clinical settings proportionate to the developments in this field. A possible reason for this is due to the development and evaluation of these devices from a predominantly engineering perspective. One way to mitigate this effect is to further include the principles of neurophysiology into the development of these systems. To further include these principles, this research proposes a method for grounded evaluation of three machine learning algorithms to gain insight on what modeling approaches are able to both replicate therapist assistance and emulate therapist strategies. The algorithms evaluated in this paper include ordinary least squares regression (OLS), gaussian process regression (GPR) and inverse reinforcement learning (IRL). The results show that grounded evaluation is able to provide evidence to support the algorithms at a higher resolution. Also, it was observed that GPR is likely the most accurate algorithm to replicate therapist assistance and to emulate therapist adaptation strategies.
ContributorsSmith, Mason Owen (Author) / Zhang, Wenlong (Thesis advisor) / Ben Amor, Hani (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
190848-Thumbnail Image.png
Description
This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human

This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human proprioception, can foster enhanced mobility and safety. This is especially pertinent for individuals with compromised motor functions.British Neurologist Oliver Wolf Sacks in 1985 published “The Man who Mistook His Wife for a Hat” a series of his most memorable neurological case describing the brain's strangest pathways. One of these cases is “The Disembodied Lady”, Christina a 27-year-old woman that lost entirely the sense of proprioception due to polyneuropathy. This caused her to not be able to control her body, and she declares that “I feel the wind on my arms and face, and then I know, faintly, I have arms and a face. It’s not the real thing, but it’s something—it lifts this horrible, dead veil for a while. ” Finally, she was able to control her body using vision alone. Dr. Sacks introduced, for the first time, the importance of proprioception, as the sense of position of body parts relative to other parts of the body, to western culture. This document’s mission is to identify unexplored concepts in the literature regarding exoskeletons, wearables and assistive technology and a user’s proprioception, embodiment and utilization when wearing devices. Dr. Philipp Beckerle suggests the need to research the connections between wearable hardware and human sense of proprioception. He also emphasizes the need for functional assessment protocols for wearables devices and the role of embodiment. He criticizes the current commercially available upper-limb prostheses since they only restore limited functions and therefore impede embodiment. This document’s goal is to identify operative solutions through the adaptation of existing technologies and to use effective solutions to improve the quality of life of people suffering from pathologies or traumatic injuries.
ContributorsVignola, Claudio (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / McDaniels, Troy (Committee member) / Arizona State University (Publisher)
Created2023
168484-Thumbnail Image.png
Description
The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with

The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with a user’s range of motion and is actuated with X-oriented flat fabric pneumatic artificial muscles (X-ff-PAM) that contract when pressurized and can generate 190N of force at 200kPa in a 0.3 sec window. For use in gait assistance experiments, X-ff-PAM actuators were placed anterior and posterior to the right hip joint. Extension assistance and flexion assistance was provided in 10-45% and 50-90% of the gait cycle, respectively. Device effectivity was determined through range of motion (ROM) preservation and hip flexor and extensor muscular activity reduction. While the active suit reduced average hip ROM by 4o from the target 30o, all monitored muscles experienced significant reductions in electrical activity. The gluteus maximus and biceps femoris experienced electrical activity reduction of 13.1% and 6.6% respectively and the iliacus and rectus femoris experienced 10.7% and 27.7% respectively. To test suit rehabilitative potential, the actuators were programmed to apply periodic torque perturbations to induce locomotor entrainment. An X-ff-PAM was contracted at the subject’s preferred gait frequency and, in randomly ordered increments of 3%, increased up to 15% beyond. Perturbations located anterior and posterior to the hip were tested separately to assess impact of location on entrainment characteristics. All 11 healthy participants achieved entrainment in all 12 experimental conditions in both suit orientations. Phase-locking consistently occurred around toe-off phase of the gait cycle (GC). Extension perturbations synchronized earlier in the gait cycle (before 60% GC where peak hip extension occurs) than flexion perturbations (just after 60% GC at the transition from full hip extension to hip flexion), across group averaged results. The study demonstrated the suit can significantly extend the basin of entrainment and improve transient response compared to previously reported results and confirms that a single stable attractor exists during gait entrainment to unidirectional hip perturbations.
ContributorsBaye-Wallace, Lily (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021