Matching Items (6)
Filtering by

Clear all filters

134377-Thumbnail Image.png
Description
Serial killers have had a profound impact on the United States' most powerful law enforcement agency, the Federal Bureau of Investigation. Through a brief history of the FBI, the birth of the Behavioral Analysis Unit is highlighted and criminal profiling is realized as a tool to apprehend these serial killers.

Serial killers have had a profound impact on the United States' most powerful law enforcement agency, the Federal Bureau of Investigation. Through a brief history of the FBI, the birth of the Behavioral Analysis Unit is highlighted and criminal profiling is realized as a tool to apprehend these serial killers. Four serial killer cases are presented as important representations to illustrate the contributions that were made to the FBI's investigatory procedure. As serial killings make up only one percent of the murders in the U.S. each year, it is still evident that these cases have had a profound impact on the U.S.'s top law enforcement agency. The FBI has been able to react to each case more effectively than the last. Constant learning on the job, as each impactful case happens within a short time span from the last, has been a necessity for investigators and has been a prime strength of the FBI. There is no way to tell when an individual will begin to commit serial murder, so while the FBI's methods are not perfect, the Bureau has been able to respond in full to each challenge a new serial killer case has presented and arrest the guilty party. Through an analysis of the criminal profile, stereotypes attributed to serial killers, and the application of forensic evidence to serial killer investigations, the impact of the investigations of these cases by the FBI is examined. A real world application of the FBI's recommended procedure for a serial killer investigation is spotlighted and analyzed to determine its practicality in modern-day investigations.
Created2017-05
148066-Thumbnail Image.png
Description

The subcategory of evidence deemed trace evidence is frequently seen in crime scenes, and while it is commonly the smallest evidence around, that doesn’t stop it from greatly contributing to the findings at the scene. Blood evidence may be categorized into this group in certain cases at crime scenes, especially

The subcategory of evidence deemed trace evidence is frequently seen in crime scenes, and while it is commonly the smallest evidence around, that doesn’t stop it from greatly contributing to the findings at the scene. Blood evidence may be categorized into this group in certain cases at crime scenes, especially in cases of transfer between two objects or people. In this study, the transfer of blood across both porous and non-porous substrates was examined to determine the persistence of blood across both substrates. The resulting stains after each trial of transfers were tested with a presumptive blood test commonly used in crime labs, the Kastle-Meyer test. Throughout all trials of the experiment, it was determined that blood on a non-porous surface typically dries faster as long as there isn’t a pooling effect, which hinders the ability for a stain to be continuously transferred and detected by Kastle-Meyer. Conversely, porous substrates are more likely to absorb and retain the blood in the material, allowing the blood to be released when pressure is applied, causing the stain to transfer more easily and result in a stain that will produce a positive Kastle-Meyer result.

ContributorsKincade, Morgan (Author) / Weidner, Lauren (Thesis director) / Kobojek, Kimberly (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148084-Thumbnail Image.png
Description

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The age of blow flies found at a scene is used to calculate the PMI. Blow fly age can be estimated using weather data as these insects are poikilothermic (Okpara, 2018). Morphological analysis also can be used to estimate age; however, it is more difficult with pupal samples as the pupae exterior does not change significantly as development progresses (Bala & Sharma, 2016). Gene regulation analysis can estimate the age of samples. MicroRNAs are short noncoding RNA that regulate gene expression (Cannell et al., 2008). Here, we aim to catalog miRNAs expressed during the development of three forensically relevant blow fly species preserved in several storage conditions. Results demonstrated that various miRNA sequences were differentially expressed across pupation. Expression of miR92b increased during mid pupation, aga-miR-92b expression increased during early pupation, and bantam, miR957, and dana-bantam-RA expression increased during late pupation. These results suggest that microRNA can be used to estimate the age of pupal samples as miRNA expression changes throughout pupation. Future work could develop a statistical model to accurately determine age using miRNA expression patterns.

ContributorsHerrera-Quiroz, Demian David (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148021-Thumbnail Image.png
Description

Since the inception of what is now known as the Behavioral Analysis Unit (BAU) at the Federal Bureau of Investigation (FBI) in the 1970s, criminal profiling has become an increasingly prevalent entity in both forensic science and the popular imagination. The fundamental idea of which profiling is premised – behavior

Since the inception of what is now known as the Behavioral Analysis Unit (BAU) at the Federal Bureau of Investigation (FBI) in the 1970s, criminal profiling has become an increasingly prevalent entity in both forensic science and the popular imagination. The fundamental idea of which profiling is premised – behavior as a reflection of personality – has been the subject of a great deal of misunderstanding, with professionals and nonprofessionals alike questioning whether profiling represents an art or a science and what its function in forensic science should be. To provide a more thorough understanding of criminal profiling’s capabilities and its efficacy as a law enforcement tool, this thesis will examine the application of criminal profiling to investigations, various court rulings concerning profiling’s admissibility, and the role that popular media plays in the perception and function of the practice. It will also discuss how future research and regulatory advancements may strengthen criminal profiling’s scientific merit and legitimacy.

ContributorsGeraghty, Bridget Elizabeth (Author) / Kobojek, Kimberly (Thesis director) / Gruber, Diane (Committee member) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148031-Thumbnail Image.png
Description

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors including temperature and feeding substrate type. Unfortunately, dietary fat content remains an understudied factor on the development process, which is problematic given the relatively high rates of obesity in the United States. To study the effects of fat content on blow fly development we investigated the survivorship, adult weight and development of Lucilia sericata (Meigen; Diptera: Calliphoridae) and Phormia regina (Meigen; Diptera: Calliphoridae) on ground beef with a 10%, 20%, or 27% fat content. As fat content increased, survivorship decreased across both species with P. regina being significantly impacted. While P. regina adults were generally larger than L. sericata across all fat levels, only L. sericata demonstrated a significant (P < 0.05) difference in weight by sex. Average total development times for P. regina are comparable to averages published in other literature. Average total development times for L. sericata, however, were nearly 50 hours higher. These findings provide insight on the effect of fat content on blow fly development, a factor that should be considered when estimating a mPMI. By understanding how fat levels affect the survivorship and development of the species studied here, we can begin improving the practice of insect evidence analysis in casework.

ContributorsNoblesse, Andrew (Author) / Weidner, Lauren (Thesis director) / Parrott, Jonathan (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165863-Thumbnail Image.png
Description
Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of

Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of critical thermal limits of forensically-relevant insects is crucial, as their presence or absence could alter the overall postmortem interval (PMI) calculation. This study focuses on the larvae of Phormia regina (Meigen) (Diptera: Calliphoridae), a forensically relevant blow fly common across North America. Three populations were examined (Arizona, Colorado, and New Jersey), and five day old larvae were exposed to one of two temperatures, 39℃ or 45℃, for five hours. Across all colonies, the survival rate was lower at 45℃ than 39℃, in both larval and emerged adult stages. The Arizona colony experienced a harsher drop in survival rates at 45℃ than either the Colorado or New Jersey colonies. This research suggests that the range of 39℃ - 45℃ approaches the critical thermal limit for P. regina, but does not yet exhibit a near or complete failure of survivorship that a critical temperature would cause at this duration of time. However, there is opportunity for further studies to examine this critical temperature by investigating other temperatures within the 39℃ - 45℃ range and at longer durations of time in these temperatures.
ContributorsMcNeil, Tara (Author) / Weidner, Lauren (Thesis director) / Meeds, Andrew (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05