Matching Items (18)

136818-Thumbnail Image.png

Downwind

Description

In the 1950s-60s, the United States performed nuclear testing 60 miles north of Las Vegas. The prevailing winds carried radiation from those tests across the United States. It didn't take

In the 1950s-60s, the United States performed nuclear testing 60 miles north of Las Vegas. The prevailing winds carried radiation from those tests across the United States. It didn't take long for groups of people to begin developing cancer, possibly as a side effect of the testing. In 1990, Congress established a program to compensate downwind victims of the test site. But one portion of one county in Arizona was never compensated, despite the impact cancer had in the area. This documentary is their story. (Documentary and website accessible at downwinddocumentary.com)

Contributors

Agent

Created

Date Created
  • 2014-05

147964-Thumbnail Image.png

Accuracy of Error Correction Code and Regression Analysis within a Python Software

Description

In collaboration with Moog Broad Reach and Arizona State University, a<br/>team of five undergraduate students designed a hardware design solution for<br/>protecting flash memory data in a spaced-based radioactive environment. Team<br/>Aegis

In collaboration with Moog Broad Reach and Arizona State University, a<br/>team of five undergraduate students designed a hardware design solution for<br/>protecting flash memory data in a spaced-based radioactive environment. Team<br/>Aegis have been working on the research, design, and implementation of a<br/>Verilog- and Python-based error correction code using a Reed-Solomon method<br/>to identify bit changes of error code. For an additional senior design project, a<br/>Python code was implemented that runs statistical analysis to identify whether<br/>the error correction code is more effective than a triple-redundancy check as well<br/>as determining if the presence of errors can be modeled by a regression model.

Contributors

Agent

Created

Date Created
  • 2021-05

148451-Thumbnail Image.png

Analyzing the Effects of Conduction, Convection, and Radiation in a Rotary Drum

Description

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU; however, the design of the rotary drum used in these studies is restrictive and experiments using radiation heat transfer have not been possible.<br/><br/>This study focuses on recounting the steps taken to upgrade the rotary drum setup and detailing the recommended procedure for experimental tests using radiant heat transfer upon completed construction of the new setup. To develop an improved rotary drum setup, flaws in the original design were analyzed and resolved. This process resulted in a redesigned drum heating system, an altered thinner drum, and a larger drum box. The recommended procedure for radiant heat transfer tests is focused on determining how particle size, drum fill level, and drum rotation rate impact the radiant heat transfer rate.

Contributors

Agent

Created

Date Created
  • 2021-05

148495-Thumbnail Image.png

Tunable Near-Field Radiative Heat Transfer Exceeding Blackbody Limit with Vanadium Dioxide Thin Film

Description

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that near-field radiation generates greater heat flux that conventional radiation governed by Planck’s law with maximum for blackbodies. Working with a phase shift material such as VO2 enables a switch-like effect to occur where the total amount of heat flux fluctuates as VO2 transitions from a metal to an insulator. In this paper, the theoretical heat flux and near-field radiation effect are modeled for a set-up of VO2 and SiO2 layers separated by different vacuum gaps. In addition, a physical experimental set-up is validated for future near-field radiation experiments.

Contributors

Agent

Created

Date Created
  • 2021-05

131993-Thumbnail Image.png

Trichoplax adhaerens: A Novel Model Organism in Cancer Research

Description

Trichoplax adhaerens (Placozoa) is the simplest multicellular animal to be described. This organism lacks nervous tissue, muscle tissue and organs, and is composed of only five cell types organized into

Trichoplax adhaerens (Placozoa) is the simplest multicellular animal to be described. This organism lacks nervous tissue, muscle tissue and organs, and is composed of only five cell types organized into three layers. Placozoa are gaining popularity as a model organism due to their simple make-up and completely sequenced genome. The complete sequencing of this organism’s genome has revealed the presence of important genes in cancer such as TP53 and MDM2 genes. Along with the presence of these genes, there are also additional pathways commonly deregulated in cancer that are well conserved in this organism. T. adhaerens are able to survive exposure to 160Gy and even 240Gy of X-ray radiation. Though small dark bodies form within the main body, they tend to extrude those masses, and continue to reproduce afterwards. After exposure to both grades of radiation, there was a greater increase in the apparent population size of the treated population than the control population. There was also a greater decrease in surface area of the organisms exposed to 160Gy than the control organisms. This increase in population and decrease in surface area of the treated organisms could be due to the extruded bodies. We hypothesize that the observed extrusion is a novel cancer defense mechanism for ridding the animal of damaged or mutated cells. This hypothesis should be tested through longitudinal observation and genetic analysis of the extruded bodies.

Contributors

Agent

Created

Date Created
  • 2019-12

Study of a night sky radiator cooling system utilizing direct fluid radiation emission and varying cover materials

Description

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.

Contributors

Agent

Created

Date Created
  • 2011

157327-Thumbnail Image.png

Development of dose verification detectors towards improving proton therapy outcomes

Description

The challenge of radiation therapy is to maximize the dose to the tumor while simultaneously minimizing the dose elsewhere. Proton therapy is well suited to this challenge due to the

The challenge of radiation therapy is to maximize the dose to the tumor while simultaneously minimizing the dose elsewhere. Proton therapy is well suited to this challenge due to the way protons slow down in matter. As the proton slows down, the rate of energy loss per unit path length continuously increases leading to a sharp dose near the end of range. Unlike conventional radiation therapy, protons stop inside the patient, sparing tissue beyond the tumor. Proton therapy should be superior to existing modalities, however, because protons stop inside the patient, there is uncertainty in the range. “Range uncertainty” causes doctors to take a conservative approach in treatment planning, counteracting the advantages offered by proton therapy. Range uncertainty prevents proton therapy from reaching its full potential.

A new method of delivering protons, pencil-beam scanning (PBS), has become the new standard for treatment over the past few years. PBS utilizes magnets to raster scan a thin proton beam across the tumor at discrete locations and using many discrete pulses of typically 10 ms duration each. The depth is controlled by changing the beam energy. The discretization in time of the proton delivery allows for new methods of dose verification, however few devices have been developed which can meet the bandwidth demands of PBS.

In this work, two devices have been developed to perform dose verification and monitoring with an emphasis placed on fast response times. Measurements were performed at the Mayo Clinic. One detector addresses range uncertainty by measuring prompt gamma-rays emitted during treatment. The range detector presented in this work is able to measure the proton range in-vivo to within 1.1 mm at depths up to 11 cm in less than 500 ms and up to 7.5 cm in less than 200 ms. A beam fluence detector presented in this work is able to measure the position and shape of each beam spot. It is hoped that this work may lead to a further maturation of detection techniques in proton therapy, helping the treatment to reach its full potential to improve the outcomes in patients.

Contributors

Agent

Created

Date Created
  • 2019

154941-Thumbnail Image.png

(U-Th)/He, U/Pb, and radiation damage dating of the Rochechouart-Chassenon impact structure, France

Description

It has been hypothesized that the ~25 km Rochechouart-Chassenon impact structure (RCIS) in the NW Massif Central, France, was formed during a Late Triassic (ca. 214 Ma) terrestrial impact event

It has been hypothesized that the ~25 km Rochechouart-Chassenon impact structure (RCIS) in the NW Massif Central, France, was formed during a Late Triassic (ca. 214 Ma) terrestrial impact event that produced a catena of several large craters. Testing this hypothesis, and assessing its possible impacts on biological evolution, requires both accurate and precise dating of candidate impact structures. Like many of these structures, the age of the RCIS is controversial because geochronological datasets yield contradictory results, even when a single isotopic system is used; for example, the two most recent 40Ar/39Ar studies of RCIS yielded statistically inconsistent dates of 201 ± 2 Ma (2σ) and 214 ± 8 Ma (2σ). While the precision offered by various geochronometers used to date impact structures varies significantly, a fair way to assess the confidence scientists might have in the accuracy of an impact age is to establish whether or not multiple chronometers yield statistically indistinguishable ages when applied to that structure. With that in mind, I have applied the (U-Th)/He, U/Pb, and radiation damage chronometers to zircons separated from two different RCIS impactites. My best estimate of the zircon (U-Th)/He age of the impact event is 191.6 ± 9.1 Ma at the 95% confidence level. U/Pb zircon dates suggest that most zircons in the RCIS target rocks were not completely reset during impact, but a subset (n = 8) of zircons appear to have crystallized from the impact melt or to have been completely reset; these zircons indicate a U/Pb impact age of 202.6 ± 5.8 Ma (95% confidence level). Zircon radiation damage dates are highly variable, indicating that the RCIS event resulted only in partial annealing of pre-impact zircon in the country rock, but a small sub-population of zircons yielded a mean date of 211 ± 13 Ma (95% confidence level). These results – all statistically indistinguishable from the previously published 40Ar/39Ar date of 201 ± 2 Ma – collectively argue that the impact age was near the presently agreed upon Triassic-Jurassic boundary. This age raises the possibility that seismite and tsunamite deposits found in the present-day British Isles may be related to the RCIS.

Contributors

Agent

Created

Date Created
  • 2016

154899-Thumbnail Image.png

SST SuperFlash modeling and simulation under ionizing radiation

Description

Flash memories are critical for embedded devices to operate properly but are susceptible to radiation effects, which make flash memory a key factor to improve the reliability of circuitry. This

Flash memories are critical for embedded devices to operate properly but are susceptible to radiation effects, which make flash memory a key factor to improve the reliability of circuitry. This thesis describes the simulation techniques used to analyze and predict total ionizing dose (TID) effects on 90-nm technology Silicon Storage Technology (SST) SuperFlash Generation 3 devices. Silvaco Atlas is used for both device level design and simulation purposes.

The simulations consist of no radiation and radiation modeling. The no radiation modeling details the cell structure development and characterizes basic operations (read, erase and program) of a flash memory cell. The program time is observed to be approximately 10 μs while the erase time is approximately 0.1 ms.

The radiation modeling uses the fixed oxide charge method to analyze the TID effects on the same flash memory cell. After irradiation, a threshold voltage shift of the flash memory cell is observed. The threshold voltages of a programmed cell and an erased cell are reduced at an average rate of 0.025 V/krad.

The use of simulation techniques allows designers to better understand the TID response of a SST flash memory cell and to predict cell level TID effects without performing the costly in-situ irradiation experiments. The simulation and experimental results agree qualitatively. In particular, simulation results reveal that ‘0’ to ‘1’ errors but not ‘1’ to ‘0’ retention errors occur; likewise, ‘0’ to ‘1’ errors dominate experimental testing, which also includes circuitry effects that can cause ‘1’ to ‘0’ failures. Both simulation and experimental results reveal flash memory cell TID resilience to about 200 krad.

Contributors

Agent

Created

Date Created
  • 2016