Matching Items (15)
Filtering by

Clear all filters

152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution:

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Creath, Richard (Committee member) / Robert, Jason S. (Committee member) / Laubichler, Manfred D. (Committee member) / Arizona State University (Publisher)
Created2014
152891-Thumbnail Image.png
Description
Leo Kanner first described autism in his 1943 article in Nervous Child titled "Autistic Disturbances of Affective Contact". Throughout, he describes the eleven children with autism in exacting detail. In the closing paragraphs, the parents of autistic children are described as emotionally cold. Yet, he concludes that the condition as

Leo Kanner first described autism in his 1943 article in Nervous Child titled "Autistic Disturbances of Affective Contact". Throughout, he describes the eleven children with autism in exacting detail. In the closing paragraphs, the parents of autistic children are described as emotionally cold. Yet, he concludes that the condition as he described it was innate. Since its publication, his observations about parents have been a source of controversy surrounding the original definition of autism.

Thus far, histories about autism have pointed to descriptions of parents of autistic children with the claim that Kanner abstained from assigning them causal significance. Understanding the theoretical context in which Kanner's practice was embedded is essential to sorting out how he could have held such seemingly contrary views simultaneously.

This thesis illustrates that Kanner held an explicitly descriptive frame of reference toward his eleven child patients, their parents, and autism. Adolf Meyer, his mentor at Johns Hopkins, trained him to make detailed life-charts under a clinical framework called psychobiology. By understanding that Kanner was a psychobiologist by training, I revisit the original definition of autism as a category of mental disorder and restate its terms. This history illuminates the theoretical context of autism's discovery and has important implications for the first definition of autism amidst shifting theories of childhood mental disorders and the place of the natural sciences in defining them.
ContributorsCohmer, Sean (Author) / Hurlbut, James B (Thesis advisor) / Maienschein, Jane (Committee member) / Laubichler, Manfred (Committee member) / Arizona State University (Publisher)
Created2014
153134-Thumbnail Image.png
Description
This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution

This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution as inextricably associated phenomena. This project develops three case studies. The first addresses the Swiss-German zoologist Theodor Eimer's book Organic Evolution (1890), which sought to undermine the work of noted evolutionist August Weismann. Second, the American paleontologist Edward Drinker Cope's Primary Factors (1896) developed a sophisticated system of inheritance that included the material of heredity and the energy needed to induce and modify ontogenetic phenomena. Third, the Russian biogeographer Leo Berg's Nomogenesis (1926) argued that the biological world is deeply structured in a way that prevents changes to morphology taking place in more than one or a few directions. These authors based their ideas on extensive empirical evidence of long-term evolutionary trajectories. They also sought to synthesize knowledge from a wide range of studies and proposed causes of evolution and development within a unified causal framework based on laws of evolution. While being mindful of the variation between these three theories, this project advances "Definitely Directed Evolution" as a term to designate these shared features. The conceptual coherence and reception of these theories shows that Definitely Directed Evolution from 1890 to 1926 is an important piece in reconstructing the wider history of theories of evolutionary directionality.
ContributorsUlett, Mark Andrew (Author) / Laubichler, Manfred D (Thesis advisor) / Hall, Brian K (Committee member) / Lynch, John (Committee member) / Maienschein, Jane (Committee member) / Smocovitis, Vassiliki B (Committee member) / Arizona State University (Publisher)
Created2014
150454-Thumbnail Image.png
Description
Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a

Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a value system starkly different from the value of knowledge. By analyzing the political discourse of the South Korean policymakers, mass media, and government documents, this study examines the definition of science in South Korea. The analysis revealed that the Korean science, informed by the cultural, historical, and societal contexts, is largely focused on the values of national economic prosperity, international competitiveness, and international reputation of the country, overshadowing other values like the pursuit of knowledge or even individual rights. The identification of the new value system in South Korean science deviating from the traditional definition of science implies that there must be other definitions of science that also deviates, and that even in the Western world, the definition of science may yield similar deviations upon closer examination. The compatibility of the South Korean brand of science to the international scientific community also implies that a categorical quality is encompassing these different contextual definitions of science.
ContributorsHyun, Byunghun (Author) / Hurlbut, Ben (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2011
136990-Thumbnail Image.png
Description
This project focuses on the history of how teratogens, or agents which have the potential to cause birth defects, have been understood and tested for teratogenic potential in the US over the twentieth century. Prior to this time, teratogen studies were primarily concerned with cataloguing defects rather than exploring possible

This project focuses on the history of how teratogens, or agents which have the potential to cause birth defects, have been understood and tested for teratogenic potential in the US over the twentieth century. Prior to this time, teratogen studies were primarily concerned with cataloguing defects rather than exploring possible causes. At the turn of the twentieth century, experimental teratogen studies with the aim of elucidating mechanisms commenced. However, these early studies did not aim to discover human pregnancy outcomes and ways to prevent them, but simply focused on the results of exposing pregnant mammals to various physical and chemical insults. My project documents the change in understanding of teratogens over the twentieth century, the advancement of testing methods, and the causes of these advancements. Through the Embryo Project at Arizona State University (embryo.asu.edu), a digital encyclopedia for topics related to embryology, development, and reproductive medicine, I wrote ten encyclopedic articles that focused on chemical mechanisms of various teratogens, testing limitations in animal models, and legal and regulatory responses to well-known teratogens. As an extension of my previous work, this project bridges the current gap in research and focuses on contextualizing major events in the field of teratology to determine how these events led to various shifts in the understanding of birth defects and their causes, and how those conceptual shifts led to the creation of teratological testing guidelines. Results show that throughout the twentieth century, there are four distinct shifts in the understanding of teratogens: the first being 1900-1945, the second being 1946-1960, the third being 1961-1980, and the fourth being 1981-2000.
ContributorsTantibanchachai, Chanapa (Author) / Maienschein, Jane (Thesis director) / Laubichler, Manfred (Committee member) / O'Neil, Erica (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
133678-Thumbnail Image.png
Description
Background: Breast cancer affects about 12% of women in the US. Arguably, it is one of the most advertised cancers. Mammography became a popular tool of breast cancer screening in the 1970s, and patient-geared guidelines came from the American Cancer Society (ACS) and the US Preventative Task Force (USPSTF). This

Background: Breast cancer affects about 12% of women in the US. Arguably, it is one of the most advertised cancers. Mammography became a popular tool of breast cancer screening in the 1970s, and patient-geared guidelines came from the American Cancer Society (ACS) and the US Preventative Task Force (USPSTF). This research focuses on ACS guidelines, as they were the earliest as well as the most changed guidelines. Mammography guidelines changed over time due to multiple factors. This research has tracked possible causes of those changes. Methods: Research began with an extensive literature search of clinical trials, the New York Times and the Washington Post archives, systematic reviews, ACS and USPSTF archives. Results and Discussion: ACS was the first organization to provide easily accessible patient geared mammography guidelines. The guidelines have changed six times since 1976. The first came after a large clinical trial, which screened 60,000 women and showed that mammography use decreased breast cancer deaths by 30%. During the 1980s and 1990s, anti-cancer lobbyists and health insurance companies were in conflict, as the former pushed for more frequent mammography screening while the latter pushed for less. The USPSTF published their first guidelines in 2002, separated women into different age groups, and suggested screening intervals, but also included a rating of evidence quality (A-I) that supported the screening recommendation. They changed in 2009 and 2016. The frequent changes had different, not all purely scientific and evidence-based causes. The political influence of anti-cancer activists, as well as media coverage, increased public interest in mammography, which in turn influenced changes in mammography guidelines, sometimes against scientific evidence. Most changes moved towards more frequent screening for women older than 40, and less frequently for younger women, probably because multiple clinical trials had found that mammography was not useful for younger women with no history of breast cancer. There was also growing evidence of overdiagnosis and overtreatment risks from frequent mammography use. Conclusions: The patient-geared mammography guidelines have changed due to multiple and not always well-grounded factors, such as public interpretations of mammography usefulness, social attention to mammography, and influence of different stakeholders at the time. Some changes have resulted solely from political and social factors, disregarding building scientific and clinical evidence against frequent mammography use.
ContributorsZiganshina, Dina Ayratovna (Author) / Maienschein, Jane (Thesis director) / Abboud, Alexis (Committee member) / Abboud, Carolina (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
153750-Thumbnail Image.png
Description
How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s,

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.
ContributorsPeirson, Bruce Richard Erick (Author) / Laubichler, Manfred D (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2015
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
149606-Thumbnail Image.png
Description
The Committee on Rare and Endangered Wildlife Species (CREWS) of the U.S. Fish and Wildlife Service (FWS) made important and lasting contributions to one of the most significant pieces of environmental legislation in U.S. history: the Endangered Species Act of 1973 (ESA). CREWS was a prominent science-advisory body within the

The Committee on Rare and Endangered Wildlife Species (CREWS) of the U.S. Fish and Wildlife Service (FWS) made important and lasting contributions to one of the most significant pieces of environmental legislation in U.S. history: the Endangered Species Act of 1973 (ESA). CREWS was a prominent science-advisory body within the U.S. Department of the Interior (DOI) in the 1960s and 1970s, responsible for advising on the development of federal endangered-wildlife policy. The Committee took full advantage of its scientific and political authority by identifying a particular object of conservation--used in the development of the first U.S. list of endangered species--and establishing captive breeding as a primary conservation practice, both of which were written into the ESA and are employed in endangered-species listing and recovery to this day. Despite these important contributions to federal endangered-species practice and policy, CREWS has received little attention from historians of science or policy scholars. This dissertation is an empirical history of CREWS that draws on primary sources from the Smithsonian Institution (SI) Archives and a detailed analysis of the U.S. congressional record. The SI sources (including the records of the Bird and Mammal Laboratory, an FWS staffed research group stationed at the Smithsonian Institution) reveal the technical and political details of CREWS's advisory work. The congressional record provides evidence showing significant contributions of CREWS and its advisors and supervisors to the legislative process that resulted in the inclusion of key CREWS-inspired concepts and practices in the ESA. The foundational concepts and practices of the CREWS's research program drew from a number of areas currently of interest to several sub-disciplines that investigate the complex relationship between science and society. Among them are migratory bird conservation, systematics inspired by the Evolutionary Synthesis, species-focused ecology, captive breeding, reintroduction, and species transplantation. The following pages describe the role played by CREWS in drawing these various threads together and codifying them as endangered-species policy in the ESA.
ContributorsWinston, Johnny (Author) / Hamilton, Andrew (Thesis advisor) / Maienschein, Jane (Committee member) / Henson, Pamela (Committee member) / Collins, James (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2011